Return to search

Suspended Sediment Transport Dynamics and Sediment Yields in Relation to Watershed Characteristics, Upper Green River Basin, Kentucky

Sediment delivery is a major problem in the Green River, Kentucky, home of 71 of the state’s 103 known mussel species and 151 fish species. The river also provides water for many of its surrounding counties. This research focuses on how suspended sediment loads, grain size, and sediment concentration during runoff events are related to watershed characteristics.
The research characterized suspended sediment loads, grain size, and sediment concentration during runoff events and how they were related to watershed characteristics such as hydro-climatic regime, watershed size, geology and soils, topography and landuse conditions and land cover conditions. The study focused on Brush Creek and Pitman Creek watersheds in the Upper Green River Basin. This research can help in the planning and development of effective environmental strategies by screening out mitigation measures that would not be effective for implementation to minimize sediment load and suspended sediment concentration in the Green River, thereby improving the water quality of the river. Water quality was monitored using data sondes positioned at selected sites in the two watersheds. Water samples were collected during turbidity thresholds of 100 NTU and analyzed for suspended sediment concentrations. Regression models between ‘discharge and stage’ and also between ‘average turbidity and suspended sediment concentration’ were formulated and load estimates were made and compared.
Four sets of samples were collected, two at Brush Creek on 11 April (Brush Creek’s event 1) and 3 May (Brush Creek’s event 2) and the other two at Pitman Creek on the 12 February (Pitman Creek’s event 1) and 3 March (Pitman Creek’s event 2) all in the year 2008. The suspended sediment samples collected for all four events were well graded but had relatively more silt than clay and sand. This could be due to the fact that more time and energy was needed to break the bonds in clay minerals or particles and also to the fact that more energy was also needed to transport sand compared to silt. Brush Creek watershed’s particles had smaller grain sizes than Pitman Creek watershed’s particles. All four events showed clockwise hysteresis indicating that most of the sediments from both watersheds during the events were derived from the bed and banks of the channel or area adjacent to the channel.
The 11 April event (Brush Creek’s event 1) produced an estimated load of 1.1 x 105 kg and a sediment yield of 5.3 x 102 kg/km2. The 3 May event (Brush Creek’s event 2) produced an estimated load of 3.8 x 104 kg and a sediment yield of 1.8 x 102 kg/km2. Brush Creek watershed’s estimated load for the period compared was 4.9 x 105 kg and a sediment yield of 2.3 x 103 kg/km2 (53 kg/km2/day).
The 12 February event (Pitman Creek’s event 1) produced an estimated load of 2.9 x 105 kg and a sediment yield of 8.4 x 102 kg/km2. The 3 March event (Pitman Creek’s event 2) produced an estimated load of 5.7 x 105 kg and a sediment yield of 1.6 x 103 kg/km2. Pitman Creek watershed’s estimated load for the period compared was 1.1 x 106 kg and a sediment yield of 3.1 x 103 kg/km2 (71 kg/km2/day).
Pitman Creek watershed’s higher number of stream network per unit area, its high elevation and relief, its high percentage of erodible soil per unit area, its lesser area of protection of erodible soil by its vegetation compared to Brush Creek watershed’s are responsible for its higher sediment load and yield.

Identiferoai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-1158
Date01 April 2010
CreatorsOtoo, James Nii Aboh
PublisherTopSCHOLAR®
Source SetsWestern Kentucky University Theses
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses & Specialist Projects

Page generated in 0.0019 seconds