Return to search

Towards a 3D building reconstruction using spatial multisource data and computational intelligence techniques / Vers une reconstruction de batiment en 3D utilisant des données spatiales multisources et des techniques d'intelligence informatique

La reconstruction de bâtiments à partir de photographies aériennes et d’autres données spatiales urbaines multi-sources est une tâche qui utilise une multitude de méthodes automatisées et semi-automatisées allant des processus ponctuels au traitement classique des images et au balayage laser. Dans cette thèse, un système de relaxation itératif est développé sur la base de l'examen du contexte local de chaque bord en fonction de multiples sources d'entrée spatiales (masques optiques, d'élévation, d'ombre et de feuillage ainsi que d'autres données prétraitées, décrites au chapitre 6). Toutes ces données multisource et multirésolution sont fusionnées de manière à extraire les segments de ligne probables ou les arêtes correspondant aux limites des bâtiments. Deux nouveaux sous-systèmes ont également été développés dans cette thèse. Ils ont été conçus dans le but de fournir des informations supplémentaires, plus fiables, sur les contours des bâtiments dans une future version du système de relaxation proposé. La première est une méthode de réseau de neurones à convolution profonde (CNN) pour la détection de frontières de construction. Le réseau est notamment basé sur le modèle SRCNN (Dong C. L., 2015) de super-résolution à la pointe de la technologie. Il accepte des photographies aériennes illustrant des données de zones urbaines densément peuplées ainsi que leurs cartes d'altitude numériques (DEM) correspondantes. La formation utilise trois variantes de cet ensemble de données urbaines et vise à détecter les contours des bâtiments grâce à une nouvelle cartographie hétéroassociative super-résolue. Une autre innovation de cette approche est la conception d'une couche de perte personnalisée modifiée appelée Top-N. Dans cette variante, l'erreur quadratique moyenne (MSE) entre l'image de sortie reconstruite et l'image de vérité de sol (GT) fournie des contours de bâtiment est calculée sur les 2N pixels de l'image avec les valeurs les plus élevées. En supposant que la plupart des N pixels de contour de l’image GT figurent également dans les 2N pixels supérieurs de la reconstruction, cette modification équilibre les deux catégories de pixels et améliore le comportement de généralisation du modèle CNN. Les expériences ont montré que la fonction de coût Top-N offre des gains de performance par rapport à une MSE standard. Une amélioration supplémentaire de la capacité de généralisation du réseau est obtenue en utilisant le décrochage. Le deuxième sous-système est un réseau de convolution profonde à super-résolution, qui effectue un mappage associatif à entrée améliorée entre les images d'entrée à basse résolution et à haute résolution. Ce réseau a été formé aux données d’altitude à basse résolution et aux photographies urbaines optiques à haute résolution correspondantes. Une telle différence de résolution entre les images optiques / satellites optiques et les données d'élévation est souvent le cas dans les applications du monde réel. / Building reconstruction from aerial photographs and other multi-source urban spatial data is a task endeavored using a plethora of automated and semi-automated methods ranging from point processes, classic image processing and laser scanning. In this thesis, an iterative relaxation system is developed based on the examination of the local context of each edge according to multiple spatial input sources (optical, elevation, shadow & foliage masks as well as other pre-processed data as elaborated in Chapter 6). All these multisource and multiresolution data are fused so that probable line segments or edges are extracted that correspond to prominent building boundaries.Two novel sub-systems have also been developed in this thesis. They were designed with the purpose to provide additional, more reliable, information regarding building contours in a future version of the proposed relaxation system. The first is a deep convolutional neural network (CNN) method for the detection of building borders. In particular, the network is based on the state of the art super-resolution model SRCNN (Dong C. L., 2015). It accepts aerial photographs depicting densely populated urban area data as well as their corresponding digital elevation maps (DEM). Training is performed using three variations of this urban data set and aims at detecting building contours through a novel super-resolved heteroassociative mapping. Another innovation of this approach is the design of a modified custom loss layer named Top-N. In this variation, the mean square error (MSE) between the reconstructed output image and the provided ground truth (GT) image of building contours is computed on the 2N image pixels with highest values . Assuming that most of the N contour pixels of the GT image are also in the top 2N pixels of the re-construction, this modification balances the two pixel categories and improves the generalization behavior of the CNN model. It is shown in the experiments, that the Top-N cost function offers performance gains in comparison to standard MSE. Further improvement in generalization ability of the network is achieved by using dropout.The second sub-system is a super-resolution deep convolutional network, which performs an enhanced-input associative mapping between input low-resolution and high-resolution images. This network has been trained with low-resolution elevation data and the corresponding high-resolution optical urban photographs. Such a resolution discrepancy between optical aerial/satellite images and elevation data is often the case in real world applications. More specifically, low-resolution elevation data augmented by high-resolution optical aerial photographs are used with the aim of augmenting the resolution of the elevation data. This is a unique super-resolution problem where it was found that many of -the proposed general-image SR propositions do not perform as well. The network aptly named building super resolution CNN (BSRCNN) is trained using patches extracted from the aforementioned data. Results show that in comparison with a classic bicubic upscale of the elevation data the proposed implementation offers important improvement as attested by a modified PSNR and SSIM metric. In comparison, other proposed general-image SR methods performed poorer than a standard bicubic up-scaler.Finally, the relaxation system fuses together all these multisource data sources comprising of pre-processed optical data, elevation data, foliage masks, shadow masks and other pre-processed data in an attempt to assign confidence values to each pixel belonging to a building contour. Confidence is augmented or decremented iteratively until the MSE error fails below a specified threshold or a maximum number of iterations have been executed. The confidence matrix can then be used to extract the true building contours via thresholding.

Identiferoai:union.ndltd.org:theses.fr/2019LIMO0084
Date27 November 2019
CreatorsPapadopoulos, Georgios
ContributorsLimoges, Ghazanfarpour-Kholendjany, Djamchid, Vassilas, Nikolaos
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds