Return to search

Development of Self-Adaptive PVD Coatings for Machining TI6Al4V Alloy

The usage of titanium alloys in many industries has increased significantly over the years due to their superior properties. However, they are extremely difficult to machine because of their distinctive characteristics such as their high temperature strength, low thermal conductivity, and high chemical affinity for tool materials. Hence, despite their increased usage, they are still expensive to machine when compared to other metals.
The current research aims to address the machinability issues of titanium alloys by developing novel compositions of a new generation of self-adaptive Physical Vapor Deposition (PVD) coatings that function by forming beneficial tribo-films through their interaction with the environment. These tribo-films form during cutting and provide enhanced lubricity, hardness, strength, and thermal barrier characteristics to the cutting tool. It was found that during Ti6Al4V machining, significant BUE and crater wear formation occurs; however, one is dominant over the other depending on the cutting conditions. Therefore, the coatings investigated were designed by taking into consideration the dominant tool wear mechanisms and the complex tribological phenomena that occur in the cutting zone.
The current research investigated monolayer TiB2 and CrN self-adaptive PVD coatings for the rough (cutting speed - 45 m/min, feed -0.15 mm/rev, and depth of cut – 2 mm) and finish (cutting speed - 150 m/min, feed -0.1225 mm/rev, and depth of cut – 0.25 mm) turning of Ti6Al4V alloy. Detailed experimental studies were performed to study the effectiveness of the coatings during machining. Micro-mechanical characteristics of the coatings were also studied to understand how coating properties affect the coatings performance in machining and tribo-film formation. The results obtained show that both the TiB2 and CrN coatings significantly improve tool performance during the rough turning of Ti6Al4V alloy compared to the current industrial standard, which is due to certain micro-mechanical coating properties and the beneficial tribo-films formed. A coating of CrN coating was found to increase tool life during finish turning. It was also established that for machining applications where intensive adhesive interaction occurs at the tool-chip interface, coatings with lower hardness values perform significantly better than harder ones. / Thesis / Doctor of Philosophy (PhD) / Titanium alloys are increasingly becoming the material of choice for many industrial applications due to their superior properties. However, they are very difficult to machine since they have high chemical affinity towards tool materials, low thermal conductivity, and high temperature strength. These properties cause rapid failure of the tool. The objective of the current research is to address machinability issues during Ti6Al4V machining and improve tool performance. One effective strategy to minimize tool wear is to apply self-adaptive PVD tool coatings that can form beneficial tribo-films through their interaction with the environment and provide enhanced lubricity, hardness, strength, and thermal barrier characteristics to the cutting tool. In the current research, two self-adaptive PVD coatings were developed that offset the dominant tool wear mechanisms prevalent during the rough and finish turning of Ti6Al4V alloy and reduced the tool wear rate by more than 60% compared to the current industrial standard.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/27041
Date January 2021
CreatorsChowdhury, Mohammad
ContributorsVeldhuis, Stephen, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds