The bulge test is a commonly used experiment to establish the material stress-strain response at the highest possible strain levels. It consists of a metal sheet placed in a die with a circular opening. It is clamped in place and inflated with hydraulic pressure. In this thesis, a bulge testing apparatus was designed, fabricated, calibrated and used to measure the stress-strain response of an aluminum sheet metal and establish its onset of failure. The custom design incorporates a draw-bead for clamping the plate. A closed loop controlled servohydraulic pressurization system consisting of a pressure booster is used to pressurize the specimens. Deformations of the bulge are monitored with a 3D digital image correlation (DIC) system. Bulging experiments on 0.040 in thick Al-2024-T3 sheets were successfully performed. The 3D nature of the DIC enables simultaneous estimates of local strains as well as the local radius of curvature. The successful performance of the tests required careful design of the draw-bead clamping arrangement.
Experiments on four plates are presented, three of which burst in the test section as expected. Finite deformation isotropic plasticity was used to extract the true equivalent stress-strain responses from each specimen. The bulge test results correlated well with the uniaxial results as they tended to fall between tensile test results in the rolling and transverse directions. The bulge tests results extended the stress-strain response to strain levels of the order of 40%, as opposed to failure strains of the order of 10% for the tensile tests.
Three-dimensional shell and solid models were used to investigate the onset of localization that precedes failure. In both models, the calculated pressure-deformation responses were found to be in reasonable agreement with the measured ones. The solid element model was shown to better capture the localization and its evolution. The corresponding pressure maximum was shown to be imperfection sensitive. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/23655 |
Date | 25 March 2014 |
Creators | Mersch, John Philip |
Source Sets | University of Texas |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0021 seconds