Return to search

Using Social Media Intelligence to Support Business Knowledge Discovery and Decision Making

The new social media sites - blogs, micro-blogs, and social networking sites, among others - are gaining considerable momentum to facilitate collaboration and social interactions in general. These sites provide a tremendous asset for understanding social phenomena by providing a wide availability of novel data sources. Recent estimates suggest that social media sites are responsible for as much as one third of new Web content, in the forms of social networks, comments, trackbacks, advertisements, tags, etc. One critical and immediate challenge facing the MIS researchers then becomes - how to effectively utilize this huge wealth of social media data, to facilitate business knowledge discovery and decision making.Among these available data sources, social networks constitute the backbone of almost all social media sites. These network structures provide a rich description of the social scenes and contexts, which is helpful for us to address the above challenge. In this dissertation, I have primarily employed the probabilistic network models, to study various social network related problems arose from the use of social media services. In Chapter 2 and Chapter 3, I studied how information overload can affect the efficiency of information diffusion in online social networks (Delicious.com and Digg.com). Novel diffusion model were proposed to model the observed information overload. The models and their extensions are thoroughly evaluated by solving the Influence Maximization problem related to information diffusion and viral marketing applications. In Chapter 4, I studied the information overload in a micro-blogging application (Twitter.com) using a design science methodology. A content recommendation framework was proposed to help micro-blogging users to efficiently identify quality emergency news feeds. Chapter 5 presents a novel burst detection algorithm concerning identifying and analyzing correlated burst patterns by considering multiple inputs (data streams) that co-evolve over time. The algorithm was later used for discovering burst keywords/tag pairs from online social communities, which are strong indicators of emerging or changing user interests.Chapter 6 concludes this dissertation by highlighting major research contributions and future directions.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/145394
Date January 2011
CreatorsSun, Runpu
ContributorsZeng, Daniel, Zhang, Zhu, Goes, Paulo
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Dissertation, text
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds