Return to search

Impact of Forecasting Method Selection and Information Sharing on Supply Chain Performance.

Effective supply chain management gains much attention from industry and academia because it helps firms across a supply chain to reduce cost and improve customer service level efficiently. Focusing on one of the key challenges of the supply chains, namely, demand uncertainty, this dissertation extends the work of Zhao, Xie, and Leung so as to examine the effects of forecasting method selection coupled with information sharing on supply chain performance in a dynamic business environment. The results of this study showed that under various scenarios, advanced forecasting methods such as neural network and GARCH models play a more significant role when capacity tightness increases and is more important to the retailers than to the supplier under certain circumstances in terms of supply chain costs. Thus, advanced forecasting models should be promoted in supply chain management. However, this study also demonstrated that forecasting methods not capable of modeling features of certain demand patterns significantly impact a supply chain's performance. That is, a forecasting method misspecified for characteristics of the demand pattern usually results in higher supply chain costs. Thus, in practice, supply chain managers should be cognizant of the cost impact of selecting commonly used traditional forecasting methods, such as moving average and exponential smoothing, in conjunction with various operational and environmental factors, to keep supply chain cost under control. This study demonstrated that when capacity tightness is high for the supplier, information sharing plays a more important role in effective supply chain management. In addition, this study also showed that retailers benefit directly from information sharing when advanced forecasting methods are employed under certain conditions.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc12176
Date12 1900
CreatorsPan, Youqin
ContributorsPavur, Robert, Pohlen, Terrance L., Kulkarni, Shailesh
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Pan, Youqin, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0013 seconds