Return to search

Genotoxicity of haloacetic acids, aspirin and ibuprofen in human cells : genotoxic effects of water disinfectant by-products in human blood and sperm and bulk and nano forms of aspirin and ibuprofen in human blood of respiratory disease patients

This project focuses on two important topics which may pose hazards to human health. Firstly, drinking water disinfection by-products (DBPs), which are generated by the chemical disinfection of water have been investigated. What has not been shown is the effect of DBPs in human germ cells as well as somatic cells and whether oxidative stress is involved in the mechanism of genotoxic action. Three different DBPs (halo acetic acids: HAAs), together with the antioxidants – catalase and butylated hydroxyanisole (BHA), were investigated in peripheral blood cells and sperm from healthy individuals using the Comet assay and lymphocytes only using the micronucleus assay. Secondly, nanoparticles of the non-steroidal anti-inflammatory drugs (NSAIDs), aspirin and ibuprofen, have been investigated in patients with respiratory diseases, in the micronucleus assay and the Comet repair assay. NSAIDs inhibit cyclooxygenase enzyme activity, which plays part in tumour progression. In the Comet assay, BHA and catalase were able to reduce DNA damage in both cell types compared to HAAs alone. Similarly, in the micronucleus assay, micronuclei were reduced with the antioxidants, suggesting oxygen radical involvement in both assays. With the NSAIDs, reductions were seen for DNA damage in the micronucleus assay with aspirin and ibuprofen nanoparticles compared to their bulk forms. Using the Comet repair assay, aspirin and ibuprofen nanoparticles aided repair of DNA to a greater extent than their bulk counterparts, which in turn showed better repair compared to samples repaired without NSAIDs. These observations show the importance of DBPs and NSAIDs in genotoxic public health issues.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:732092
Date January 2014
CreatorsAli, Aftab H. M.
PublisherUniversity of Bradford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10454/14626

Page generated in 0.0017 seconds