Return to search

Contributions à l'étude de l'effet Hawking pour des modèles en interaction

L'effet Hawking prédit, dans un espace-temps décrivant l'effondrement d'une étoile à symétrie sphérique vers un trou noir de Schwarzschild, qu'un observateur statique, situé à l'infini, observera un flux thermal de particules quantiques à la température de Hawking. La première démonstration mathématique de l'effet Hawking pour des champs quantiques libres est due à Bachelot, dont le travail sur les champs de Klein-Gordon a été ensuite étendu aux champs de Dirac, d'abord par Bachelot lui-même, puis par Melnyk. Ces travaux, placés dans le cadre d'une symétrie sphérique, ont été complétés par Häfner, qui donna une démonstration rigoureuse de l'effet Hawking pour des champs de Dirac, autour d'une étoile s'effondrant vers un trou noir de Kerr. Le but de cette thèse est d'étudier l'effet Hawking non plus dans un modèle de champs quantiques libres, où les problèmes posés se ramènent à l'étude d'équations aux dérivées partielles linéaires, mais dans un modèle de champs de Dirac en interaction. L'interaction est supposée à support compact, statique, et localisée à l'extérieur de l'étoile. Nous choisissons de traiter le cas d'un modèle jouet, dans un espace-temps de dimension 1+1, situation à laquelle on peut se ramener, au moins dans le cas libre, en utilisant la symétrie sphérique du problème. Nous étudions le comportement de champs de fermions de Dirac dans différentes situations : d'abord, pour une observable suivant l'effondrement de l'étoile ; puis pour une observable stationnaire ; enfin, pour une interaction dépendante du temps, localisée près de la surface de l'étoile. Dans chacun de ces cas, nous montrons l'existence de l'effet Hawking et donnons l'état limite correspondant.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00937087
Date19 December 2013
CreatorsBouvier, Patrick
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0016 seconds