The work described in this thesis documents the development of new rhodium(I)-catalysed methodologies within two areas of research. The first examines the use of carbonyls as chelating groups in hydroacylation to produce synthetically valuable ketones and enones. The second area explores new carbon-carbon bond activation methodologies. Chapter 1 presents a literature review of the historical development of rhodium-catalysed hydroacylation, with a focus on chelating groups that can currently be used to suppress decarbonylation. A brief review of methodologies that avoid the requirement for a tether is also included. Chapter 2 describes the development of a novel hydroacylation methodology employing carbonyl-based functional groups as tethers on aldehyde substrates. The chapter begins with the optimisation studies for the hydroacylation of β-formyl amides with terminal and internal alkynes, allenes and terminal alkenes, and subsequently explores the substrate scope for each case. The chapter then outlines the investigations undertaken with 1,4-dicarbonyl and 1,5-dicarbonyl systems, N-formyl amides, β-formyl esters and finally β-formyl ketones. A detailed description of the routes undertaken to synthesise each starting material is also presented. Chapter 3 presents a short review surveying the key milestones in the development of carbon-carbon activation methodologies. The chapter begins with a theoretical comparison to carbon-hydrogen activation and a discussion of the unique challenges that are faced. An overview of the major strategies employed to enact these processes is subsequently presented for both strained and unstrained substrates. Chapter 4 outlines the attempts undertaken to develop a novel carbon-carbon bond activation methodology. The work evaluates sulfur-, nitrogen- and alkene-based chelating groups, known to be successful in hydroacylation, in analogous ketone substrates. Chapter 5 discusses the conclusions from this work and the potential for further work. Chapter 6 presents the experimental procedures and data.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:729079 |
Date | January 2017 |
Creators | Coxon, Thomas |
Contributors | Willis, Michael C. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://ora.ox.ac.uk/objects/uuid:26111304-1563-4c18-956e-67636b87983a |
Page generated in 0.002 seconds