Return to search

C-H Amination Catalysis from High-Spin Ferrous Complexes

The C-H amination and olefin aziridination chemistry of iron supported by dipyrromethene ligands (RLAr, L=1,9-R2-5-aryldipyrromethene, R = Mes, 2,4,6-Ph3C6H2, tBu, Ad, 10-camphoryl, Ar = Mes, 2,4,6-Cl3C6H2) was explored. The weak-field, pyrrole-based dipyrrinato ligand was designed to generate an electrophilic, high-spin metal center capable of accessing high valent reactive intermediates in the presence of organic azides. Isolation of the reactive intermediate in combination with a series of mechanistic experiments suggest the N-group transfer chemistry proceeds through a rapid, single-electron pathway and maintains an overall S=2 electronic configuration throughout the catalytic cycle. We have established the catalysts' strong preference for allylic amination over aziridination with olefin containing substrates. Aziridination is limited to styrenyl substrates without allylic C-H bonds, while allylic amination has been demonstrated with both cyclic and linear aliphatic alkenes. Notably, the functionalization of &alpha-olefins to linear allylic amines occurs with outstanding regioselectivity. / Chemistry and Chemical Biology

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11169787
Date15 October 2013
CreatorsHennessy, Elisabeth Therese
ContributorsBetley, Theodore A
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.002 seconds