Return to search

Functionality of C-Reactive Protein for Atheroprotection

C-reactive protein (CRP) is a pentameric molecule made up of identical monomers. CRP can be seen in three different forms: native pentameric CRP (native CRP), non-native pentameric CRP (nonnative CRP), and monomeric CRP (mCRP). Both native and nonnative CRP execute ligand-recognition functions for host defense. The fate of any pentameric CRP after binding to a ligand is dissociation into ligand-bound mCRP. If ligand-bound mCRP is proinflammatory, like free mCRP has been shown to be in vitro, then mCRP along with the bound ligand must be cleared from the site of inflammation. Once pentameric CRP is bound to atherogenic low-density lipoprotein (LDL), it reduces both formation of foam cells and proinflammatory effects of atherogenic LDL. A CRP mutant, that is non-native CRP, which readily binds to atherogenic LDL, has been found to be atheroprotective in a murine model of atherosclerosis. Thus, unlike statins, a drug that can lower only cholesterol levels but not CRP levels should be developed. Since non-native CRP has been shown to bind to all kinds of malformed proteins in general, it is possible that non-native CRP would be protective against all inflammatory states in which host proteins become pathogenic. If it is proven through experimentation employing transgenic mice that non-native CRP is beneficial for the host, then using a small-molecule compound to target CRP with the goal of changing the conformation of endogenous native CRP would be preferred over using recombinant non-native CRP as a biologic to treat diseases caused by pathogenic proteins such as oxidized LDL.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-11426
Date01 January 2019
CreatorsSingh, Sanjay K., Agrawal, Alok
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceETSU Faculty Works
Rightshttp://creativecommons.org/licenses/by/4.0/

Page generated in 0.002 seconds