ICT has furthered the social and economic development of societies but, rural African communities have lagged behind due to issues such as sparse population, low household income, a lack of electricity and other basic infrastructure that make it unattractive for telecommunication service providers to extend service provision. Where the service is available, ubiquitous service coverage has not translated into ubiquitous access for individuals because of the associated costs. A community-wide WMN offering VoIP using fixed telephone handsets has been deployed as a viable alternative to the cellular service provider. The effectiveness of this WMN VoIP service springs from the mobile phone usage statistics which showed that the majority of calls made are intra-community.
This dissertation has been an effort towards improved communication and access to information for the under-served communities. Key contributions include, mobile VoIP support, translation gateway deployment to make textual information accessible in voice form via the phone, IP-based radio for community information dissemination. The lack of electricity has been mitigated by the use of low-power devices. In order to circumvent the computational challenges posed by the processing and storage limitations of these devices, a decentralised system architecture whereby the processing and storage load are distributed across the mesh nodes has been proposed. High-performance equipment can
be stationed at the closest possible place with electricity in the area and connectivity extended to the non-electrified areas using low-power mesh networking devices. Implementation techniques were investigated and performance parameters measured. The quality of service experienced by the user was assessed using objective methods and QoS correlation models. A MOS value of 4.29, i.e. very good, was achieved for the mobile VoIP call quality, with the underlying hardware supporting up to 15 point-to-point simultaneous calls using SIP and the G.711 based codec. Using the PEAQ algorithm to evaluate the IP-based radio, a PEAQ value of 4.15, i.e. good, was achieved. Streaming audio across the network reduces the available bandwidth by 8Kbps per client due to the unicast nature of streaming. Therefore, a multicast approach has been proposed for efficient bandwidth utilization. The quality of the text-to-voice service rendered by the translation gateway had a PESQ score of 1.6 i.e. poor. The poor performance can be attributed to the TTS engine implementation and also to the lack of robustness in the
time-alignment module of the PESQ algorithm.
The dissertation also proposes the use of the WMN infrastructure as a back-haul to isles of WSNs deployed in areas of interest to provide access to information about environmental variables useful in decision making.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uctcs/oai:techreports.cs.uct.ac.za:996 |
Date | 01 January 2014 |
Creators | Maliwatu, Richard |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | pdf http://pubs.cs.uct.ac.za/archive/00000996/01/Thesis_RichardMaliwatu_revised_v2.pdf |
Page generated in 0.0015 seconds