Return to search

Prediction of financial product acquisition for Peruvian savings and credit associations

El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / Savings and credit cooperatives in Peru are of great importance for their participation in the economy, reaching in 2019, deposits and deposits and assets of more than 2,890,191,000. However, they do not invest in predictive technologies to identify customers with a higher probability of purchasing a financial product, making marketing campaigns unproductive. In this work, a model based on machine learning is proposed to identify the clients who are most likely to acquire a financial product for Peruvian savings and credit cooperatives. The model was implemented using IBM SPSS Modeler for predictive analysis and tests were performed on 40,000 records on 10,000 clients, obtaining 91.25% accuracy on data not used in training. / Revisión por pares

Identiferoai:union.ndltd.org:PERUUPC/oai:repositorioacademico.upc.edu.pe:10757/656581
Date30 September 2020
CreatorsVargas, Emmanuel Roque, Cadillo Montesinos, Ricardo, Mauricio, David
PublisherInstitute of Electrical and Electronics Engineers Inc.
Source SetsUniversidad Peruana de Ciencias Aplicadas (UPC)
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/article, info:eu-repo/semantics/article
Formatapplication/html
SourceRepositorio Academico - UPC, Universidad Peruana de Ciencias Aplicadas (UPC), 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
Rightsinfo:eu-repo/semantics/embargoedAccess
Relationhttps://ieeexplore.ieee.org/document/9240413

Page generated in 0.0023 seconds