<p>The purpose of this research has been to reassess the Ag-Mg system using the CALPHAD technique. Compared with previous assessments, we carry out the optimization by fitting calculations to the original data instead of second-hand information. Moreover, we use a two sub-lattice model and a four sub-lattice model based on compound energy formalism to simulate both first-order and second-order transformations between the FCC phase and the L1<sub>2</sub> phase. Undoubtedly, the CALPHAD technique has achieved a degree of maturity, but its deficiencies are regularly ignored.</p> <p>In this thesis, we develop an interval method based on Kantorovich’s idea to overcome the shortcomings of the CALPHAD technique. Both advantages and disadvantages of the interval method are discussed. We also present an example of the interval approach on thermodynamic optimization of the Ag-Mg melt. The results suggest that this method would be helpful as a pre-optimization tool.</p> / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/13538 |
Date | 10 1900 |
Creators | Dai, Cong |
Contributors | Malakhov, Dmitri V., Materials Science and Engineering |
Source Sets | McMaster University |
Detected Language | English |
Type | thesis |
Page generated in 0.0021 seconds