Return to search

Engineering Phthalocyanine-Based Organic Thin-Film Transistors for Cannabinoid Sensing & Chemotyping

The development and implementation of biosensors as an integral and growing part of our modern world has prompted the push for precision health as the next step in medicine. Adapted from aircraft engine monitoring, where an array of sensors is used to build a digital twin to preemptively predict problems, precision health requires an increase in molecular monitoring. Organic thin-film transistors (OTFTs), as sensitive, low-cost, and adaptable devices are well suited to meet this need. Phthalocyanines (Pcs), as an organic semiconducting layer for OTFTs, are easily synthesized and highly tunable small molecules which can be deposited through both solution and physical vapor deposition techniques, enhancing their utility. This work presents Pc-based OTFTs for cannabinoid sensing and chemotyping to meet the quality control needs of a growing Canadian and International cannabis industry, and to broadly demonstrate the sensitivity and selectivity attainable with Pc-based OTFTs incorporating molecular analyte sensors. Spectroelectrochemistry is established as a screening technique for Pc-based OTFT sensors and, in combination with thin-film characterization, is used to propose a mechanism for Pc-cannabinoid interactions and OTFT cannabinoid sensitivity with and without a cannabinoid-sensitive chromophore. Thin-film morphologies and polymorphs, pre- and post-analyte exposure, are demonstrated as key drivers of Pc-based OTFT sensing responses and are further explored through controlled deposition conditions and post deposition annealing techniques. Through material screening and thin-film engineering, part-per-billion cannabinoid sensitivity is achieved with Pc-based OTFTs. This report documents several strategies for sensitizing Pc-based OTFT sensors to organic analytes, and the results herein serve as a basis for continued development of Pc-based OTFT biosensors.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/44292
Date22 November 2022
CreatorsComeau, Zachary John
ContributorsLessard, Benoit, Shuhendler, Adam
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAttribution-NonCommercial 4.0 International, http://creativecommons.org/licenses/by-nc/4.0/

Page generated in 0.0014 seconds