South Africa is currently experiencing water shortage crisis, a challenge that has been attributed not only to the scarcity of freshwater, but also to fast degrading water quality. Factors such as rapid urbanisation, population and economic growth, climate change as well as poor operational and maintenance of many of the exisiting water/wastewater treatment facilities have been acknowledged as important contributors to degrading water quality in the country. Untreated or inadequately treated discharged wastewater effluents constitute point source pollution to many freshwater environments in South Africa. Hence, it becomes imperative to evaluate wastewater discharges in other to protect the scarce freshwater resource, the environment and public health. Over a twelve-month sampling period (September 2012 to August 2013), we assessed the bacteriological, virological and physicochemical qualities of the discharged final effluents of two wastewater treatment facilities in the Eastern Cape Province of South Africa. For the physicochemical assessment, a total of 144 final effluent samples were collected from both the final effluent tanks (FE) and the discharge points (DP) of the treatment facilities. Physicochemical parameters including pH, temperature, turbidity, total dissolved solids (TDS), dissolved oxygen (DO), electrical conductivity (EC) and free chlorine concentration were determined on site while biological oxygen demand (BOD), nitrate (NO3-), nitrite (NO2-), phosphate (PO4-) and chemical oxygen demand (COD) were determined in the laboratory. The bacteriological analysis of the samples was done using standard membrane filtration (MF) technique. Bacterial group assessed included: faecal indicator bacteria (faecal coliforms and E. coli) and Vibrio species, while the antibiotic susceptibility profiles of selected E. coli and Vibrio species isolates against some selected antibiotics commonly used in human therapy and veterinary medicine were determind using the standard agar-disc diffusion method. The occurrence and concentrations of human enteric viruses including: human adenovirus (HAdV), hepatitis A virus (HAV) and rotavirus (RoV) in the samples were determined by TaqMan-based real-time polymerase chain reaction (qPCR) following concentration by adsorption-elution method. The physicochemical characteristics of the samples ranged as follows: pH (6.5 – 7.6), TDS (95 – 171 mg/L), EC (134 – 267 μS/cm), temperature (12 – 27 °C), turbidity (1.5 – 65.7 mg/L), free chlorine (0.08 – 0.72 mg/L), DO (2.06 – 9.81 mg/L), BOD (0.13 – 9.81 mg/L), NO3- (0 – 21.5 mg/L), NO2- (0 – 0.72 mg/L), PO4- (0 – 18.3 mg/L) and COD (27 – 680 mg/L). Some of the characteristic such as pH, TDS, EC, temperature, nitrite and DO (on most instances) complied with recommended guidelines. Other characteristics, however, including turbidity, BOD, nitrate, phosphate and COD fell short of the recommended guidelines. All the 48 samples analysed for bacteriological qualities tested positive for the presence of the bacterial groups with significant (P≤0.05) seasonal variation in their densities. Faecal coliforms were detected in counts ranging from 1 CFU/100ml to 2.7 × 104 CFU/100ml. Presumptive E. coli counts ranged generally between 1 CFU/100ml – 1.4 × 105 CFU/100ml while counts of presumptive Vibrio species ranged between 4 CFU/100ml – 1.4 × 104 CFU/100ml. Molecular identification of the presumptive isolates by polymerase chain reactions PCR gave positive reaction rates of 76.2 percent (381/500) and 69.8 percent (279/400) for E.coli and Vibrio species respectively. The antibiotic susceptibility profiling of 205 PCR-confirmed Vibiro isolates against 18 commomly used antibiotics showed resistance frequencies ranging from 0.5 percent (imipenem) to 96.1 percent (penicillin G) at recommended breakpoint concentrations. Eighty-one percent (166/205) of the Vibrio isolates showed multidrug resistance (resistance to 3 or more antibiotics) with the most common multiple antibiotic resistance phenotype (MARP) being AP-T-TM-SMX-PG-NI-PB, occurring in 8 isolates.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ufh/vital:28328 |
Date | January 2016 |
Creators | Adefisoye, Martins Ajibade |
Publisher | University of Fort Hare, Faculty of Science & Agriculture |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Doctoral, DPhil |
Format | 328 leaves, pdf |
Rights | University of Fort Hare |
Page generated in 0.0021 seconds