Return to search

Long-term toxicity profile for real-world relapsed and refractory multiple myeloma patients treated with anti-BCMA CAR T-cell therapy

INTRODUCTION: Multiple Myeloma (MM) is a plasma cell malignancy that causes improper production of immunoglobulins and elevated levels of monoclonal protein. Resulting morbidity is a conglomeration of symptoms due to organ failure, lytic bone disease, and hematological insufficiencies. The American Cancer Society estimates more than 35,000 patients will be diagnosed with multiple myeloma in the United States in 2023. Current therapeutic regimen hinge on the idea of myeloma as a chronic disease that cannot be entirely cured and toxic chemotherapies with long-term treatment cycles are the standard of care. The need for a one-time therapy that is both safe and efficacious and with potentially curative action has led to the development of anti-BCMA CAR T-cell infusions. The overwhelming success of this novel therapy in MM has been demonstrated in clinical trials, but the need for data surrounding the long-term toxicities post-CAR T-cell treatment in a real-world population of MM patients still exists. Common expected adverse events that have been identified in clinical trials include cytokine release syndrome, neurotoxic events, hematological toxicities, and infections associated with immunosuppression. This study was formed to elucidate the long-term adverse events associated with anti-BCMA CAR T-cell therapy in a real-world patient population.
METHODS: A total of 54 patients who received a CAR T-cell infusion for their relapsed and refractory multiple myeloma were studied in a retrospective analysis at Dana-Farber Cancer Institute. Data were collected prior, during, and after infusion to gauge treatment performance and toxic side effects. Analyses of collected data, including complete blood counts, serum protein electrophoresis, fluorescence in-situ hybridization (FISH) data from bone marrow biopsy, and imaging were performed.
RESULTS: Patients were followed for a mean average of 165 days (range 29-462) post-infusion. Patients either received CiltaCel (n = 7) or IdeCel (n = 47). Grade 3 or greater cytopenia occurred in 48% of patients at some point following infusion and the median time to first onset was 30 days (10-189). Forty-six patients (85%) achieved a partial response or better as their best response to therapy. During inpatient infusion, 76% of patients experienced grade 1 or 2 cytokine release syndrome (CRS) and 8% experienced grade 1 or 2 immune effector cell-associated neurotoxicity syndrome (ICANS). A total of 12 patients (22%) developed infections after infusion with respiratory infections being the most frequent (17%). Nine patients were also evaluated on a closer scale for their experience with prolonged cytopenia, but no significant commonalities were found.
DISCUSSION: The analysis of this study found this patient population to have a considerably less frequent incidence of high grade cytopenia as compared to clinical trial data. However, 92% of patients developed grade 1-3 anemia and 77% developed any grade thrombocytopenia, both figures are greater than those presented in the KarMMa-2 clinical trial study for ide-cel. Patients who developed severe cytopenia were able to recover absolute neutrophil counts (ANC) over the course of their follow-up appointments which is an important aspect in the prevention and avoidance of serious infection. This same recovery was not observed in platelet or hemoglobin counts. Additionally, 15 patients were reported to still have high-grade cytopenia at 30—60-days post infusion, but this number drops to only 5 patients for the 60—90-day timeframe, this steep drop is indicative of an early onset of severe cytopenia that may not carry on as the patient progresses further from their infusion date. Compared to the KarMMa-2 study which reported an infection incidence of 69%, observations from this current study suggest this real-world patient population remained healthier after infusion in terms of infection with only 23% of patients developing post-infusion infection. Instances of CRS and ICANS were comparable to data evaluated in clinical trials. Finally, treatment responses did not significantly differ between the population of patients who developed grade 3 or greater cytopenia and those patients who did not. More data is required to determine the risk-benefit profile of early intervention with CAR T-cell therapy as directly compared to the current standard of care. This study is an encouraging insight into the performance of real-world RRMM patients that should assure patients and clinicians of the safety and uncompromising efficacy of anti-BCMA therapy as a treatment option for multiple myeloma.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/48127
Date20 February 2024
CreatorsCostello, Patrick
ContributorsSnyder-Cappione, Jennifer, Nadeem, Omar
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0017 seconds