Orientador: Prof. Dr. Magno Enrique Mendoza Meza / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Mecânica, 2017. / Este trabalho apresenta (i) a implementação de uma mão robótica humana produzida por impressora 3D com a caracterização de sensores
flexíveis e de força e os respectivos
algoritmos de operação; (ii) a modelagem cinemática e desenvolvimento de seu simulador; (iii) a modelagem dinâmica e seu respectivo simulador e (iv) simulações numéricas da
dinâmica de contato entre a ponta do dedo da mão e um objeto. A aplicação da tecnologia de impressão 3D é crescente na medicina. Para criar proteses mais naturais adiciona-se o
conhecimento de outras areas como robotica e sistemas de controle. Os sensores
flexíveis sao necessarios para adquirir o sinal de referência para o posicionamento dos dedos por
meio de uma luva na qual estes sensores encontram-se fixados. Os de forca sao usados para controlar a m~o com base na forca que se deseja aplicar ao segurar um objeto, seu comportamento foi estudado e a curva de cada sensor obtido experimentalmente. O microcontrolador Arduino® é responsavel pela aquisição de dados dos sensores e pelo
acionamento dos servomotores que movimentam os dedos. A modelagem cinematica da mao robotica foi realizada com base na convenção de Denavit-Hartenberg e a modelagem
dinamica com uso das equações de Euler-Lagrange a partir das funções de energia. Os simuladores foram criados com uso de Matlab/Simulink®, os quais permitem verificar
os modelos cinematico e dinamico obtidos, todavia, dada a complexidade matematica envolvida na modelagem foi criado um programa para realizar os passos matematicos;
fornecer o codigo para os simuladores criados; e um breve relatorio com as equações resultantes para rápida verficação, ou com os resultados das simulções numericas. O
modelo com restriçãoo ao movimento é obtido adicionando multiplicadores de Lagrange à função Lagrangiana de energia de acordo com as equações de restrição ao movimento,
esses multiplicadores fornecem a força de contato. O instante da colisão é modelado para a correta execução da dinâmica dos corpos acoplados. Dois modelos foram obtidos (i) um
modelo simplificado que conserva o momento linear entre a a ultima articulaçõa e a barreira e que atualiza as velocidades das outras articulações como uma fração das velocidades
que antecedem o impacto; (ii) um modelo completo, o qual considera-se todos os torques e distancias envolvidas para a atualização das velocidades. Os resultados mostraram
que o modelo simplificado é capaz de obter resultados proximos do modelo completo dependendo do ajuste do parametro que define a fração de velocidades. Testes utilizando
uma simplificação das não linearidades para angulos e velocidades pequenos se mostraram satisfatorios somente quando o sistema nao entrar em contato com a barreira. / This works presents (i) the implementation of a robotic hand made by a 3D-Printer with the characterization of
flexible and force sensors and the respective algorithms of
operation, (ii) the kinematic modeling and its simulator development, (iii) the dynamic modeling and its respective simulator and (iv) numerical simulations of contacts dynamics
between the fingertip of the hand with an object. Applications of this technology are increasing worldwide in medicine. To create more natural prostheses it is added knowledge
from other areas such as robotics and control systems. Flexible sensors are needed to acquire the reference signal to move each finger from a glove in which these sensors are
assembled. Force sensors are used to control the hand reading the applied force when it is desired to hold an object. The microcontroller Arduino® is responsible for acquiring
data from the sensors and actuation of servomotors that move the fingers. Kinematic modeling of the prosthesis was based on Denavit-Hartenberg convention and dynamic modeling with use of the Euler-Lagrange from energy functions. The simulators were created with use of Matlab/Simulink®, they allow to verify the kinematic and dynamic models obtained, however, given the mathematical complexity involved in modeling, it was created a program to perform mathematical steps; to provide the code to simulator's blocks; and a short report with the resulting equations for simple checking, or with simulations results. The move constrained model is obtained adding Lagrange multipliers to the Lagrangian energy function accordingly to the restriction equations, these multipliers provide the contact force. The collision instant is modeled to the correct execution of the coupled bodies dynamics. Two models was made (i) one simplifoed model holding only the linear momentum conservation between the last articulation and the barrier,which updates other velocities as a fraction of the velocity before impact; (ii) one complete model, that evaluates every torque and distance of the bodies to update each velocities.
The results show the simplified model is able to achieve similar results of the complete model depending of the adjustment of the parameter that denes the fraction of velocities.
Some tests with a simplification of nonlinearities for small angles and velocities was made, although results were only satisfactory when no contact happens.
Identifer | oai:union.ndltd.org:IBICT/oai:BDTD:105978 |
Date | January 2017 |
Creators | Zucatelli, Fernando Henrique Gomes |
Contributors | Meza, Magno Enrique Mendoza, Rafikova, Elvira, Camino, Juan Francisco |
Source Sets | IBICT Brazilian ETDs |
Language | Inglês |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf, 202 f. : il. |
Source | reponame:Repositório Institucional da UFABC, instname:Universidade Federal do ABC, instacron:UFABC |
Rights | info:eu-repo/semantics/openAccess |
Relation | http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=105978&midiaext=74240, http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=105978&midiaext=74239, Cover: http://biblioteca.ufabc.edu.brphp/capa.php?obra=105978 |
Page generated in 0.0032 seconds