A group of minerals typical of the oxidation zone of copper deposits was studied using chemical thermodynamics, mineral stability relationships, and petrography. It has been concluded that many processes, such as alteration, can be explained using thermodynamics and are compatible with natural relationships. A mineral assemblage consisting of basic carbonates of copper and zinc was investigated with carbon isotopes and mineral stability relationships. The results obtained are consistent with processes resulting from oxidation and leaching of a sulfide deposit followed by redeposition of copper and zinc in the zone of oxidation. Four processes have been suggested by which copper could be introduced into a near-surface environment from depth. Reactions which would occur under these conditions may result in formation of mesogene or hypogene malachite and chrysocolla. A vein deposit containing minerals typical of the zone of oxidation was investigated and it has been concluded that the minerals may have formed from a hydro-thermal solution related to near-surface volcanism.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/244079 |
Date | January 1968 |
Creators | Beane, Richard Edward |
Contributors | Titley, Spencer R., Titley, Spencer R., Damon, Paul E., Guilbert, John M., Beane, Richard Edward |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the Antevs Library, Department of Geosciences, and the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author or the department. |
Page generated in 0.0019 seconds