Mycoplasma hominis est un pathogène humain opportuniste responsable d’infections génitales et néo-natales. Modifier génétiquement cette bactérie est nécessaire afin de comprendre les mécanismes de virulence et d’infection de ce pathogène. Il n’existe à ce jour aucun outil moléculaire efficace permettant de manipuler le génome de M. hominis, limitant les recherches sur sa pathogénicité et son métabolisme particulier reposant sur l’arginine. De nouvelles technologies rassemblées sous le terme de Biologie de Synthèse (BS) ont récemment émergé, offrant des perspectives inédites pour l’étude des mycoplasmes en permettant de modifier leurs génomes à grande échelle et de produire des souches mutantes. Ces travaux menés au J. Craig Venter Institute (JCVI, USA) ont montré que le génome de mycoplasmes apparentés pouvait être cloné et manipulé dans la levure avant d’être transplanté dans une cellule receveuse. La levure sert d’hôte d’accueil temporaire pour modifier le génome de la bactérie. Cette approche novatrice ouvre de nombreuses perspectives dans le cadre du développement de la génomique fonctionnelle chez les mycoplasmes pour lesquels les outils génétiques efficaces sont peu nombreux. Le but de cette thèse a été d’adapter pour la première fois certains outils de BS à M. hominis dans le but de créer des mutants déficients pour une fonction donnée. Pour cela, le génome de la souche type de M. hominis PG21 (665 kb) a été cloné dans la levure Saccharomyces cerevisiae par « Transformation-Associated Recombination cloning » (TAR-cloning). Deux clones (B3-2 et B3-4) de levure possédant le génome complet de M. hominis ont été validés par analyse en PCR simplex, PCR multiplex et électrophorèse en champs pulsé (PFGE). Ces clones levures ont ensuite été propagés en milieu sélectif durant 180 générations (30 passages), afin d’évaluer la stabilité du génome bactérien dans son hôte. Cette expérience a montré que (i) si la taille du génome de M. hominis ne variait pas au cours des premiers passages, elle diminuait progressivement à partir du dixième passage (≈60 générations), et que (ii) les zones du génome enrichies en séquence répétées étaient préférentiellement perdues. En tenant compte de ces résultats, le génome de M. hominis a été modifié chez le clone B3-4 par la technique « Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 » (CRISPR/Cas9) lors de passages précoces. Des clones de S. cerevisiae possédant un génome de M. hominis PG21 complet délété du gène vaa, codant une protéine d’adhésion majeure, ont été ainsi produits. La dernière étape de cette approche consistait à transplanter le génome modifié dans une cellule receveuse de M. hominis ou de Mycoplasma arthritidis, espèce phylogénétiquement la plus proche de M. hominis. Aucun protocole de transformation de M. hominis n’étant disponible au début de nos travaux, cette étape constituait un verrou majeur dans la mise en place des outils de BS chez cette espèce. Ce verrou a été en partie levé puisqu’une méthode de transformation de M. hominis basée sur du polyéthylène glycol (PEG) et mettant en jeu le plasposon pMT85 (plasmide contenant un transposon conférant la résistance à la tétracycline) a été mise au point au laboratoire. Cette technique de transformation, développée pour la souche de référence M. hominis M132 (745 kb) reste encore peu efficace ; elle est néanmoins reproductible et a permis d’obtenir des mutants d’intérêt de M. hominis. Le transformant n°28-2 a, ainsi, été muté dans le gène Mhom132_2390, codant le précurseur de la protéine P75, une adhésine putative de M. hominis. Le séquençage des génomes complets d’autres transformants a révélé l’insertion de multiples copies du transposon et la présence d’évènements de duplication et d’inversion de larges fragments d’ADN dans au moins deux génomes de M. hominis. / Mycoplasma hominis is an opportunistic human pathogen responsible for genital and neonatal infections. Genetically modifying this bacterium is necessary to understand the virulence and infection mechanisms of this pathogen. There is currently no effective molecular tool to engineer the genome of this bacterium, limiting research on its pathogenicity and its peculiar metabolism based on arginine.New technologies have recently emerged in the field of Synthetic Biology (BS), offering new perspectives for the study of mycoplasmas by allowing large scale genome modifications and the production of mutant strains. Work at the J. Craig Venter Institute (JCVI, USA) has shown that the genome of related mycoplasmas can be cloned and manipulated in yeast before being transplanted into a recipient cell. The yeast serves as a temporary host to modify the genome of the bacterium. This innovative approach opens many perspectives in the development of functional genomics in mycoplasmas for which there are few effective genetic tools. The goal of this thesis was to adapt a number of BS tools to M. hominis for the first time, in order to create mutants deficient for a given function. To achieve this goal, the genome of the M. hominis type strain PG21 (665 kb) was cloned into the yeast Saccharomyces cerevisiae by Transformation-Associated Recombination cloning (TAR-cloning). Two yeast clones (B3-2 and B3-4) possessing the complete genome of M. hominis were validated by simplex PCR, multiplex PCR and Pulsed Field Gel Electrophoresis (PFGE) analyses. These yeast clones were then propagated in a selective medium for 180 generations (30 passages) to evaluate the stability of the bacterial genome in its host. This experiment showed that (i) the size of the genome of M. hominis did not change during the first passages, it decreased progressively from the tenth passage (≈60 generations), and (ii) the enriched genome areas in repeated sequence were preferentially lost. Thus, the genome of M. hominis was modified in the B3-4 clone at early passages using the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) technology. Yeast clones with a complete M. hominis PG21 genome with a deleted vaa gene, encoding a major adhesion protein, were produced using this approach. The final step of this approach was to transplant the modified genome into a recipient cell of M. hominis or Mycoplasma arthritidis, the species phylogenetically closest to M. hominis. As no M. hominis transformation protocol was available at the beginning of our work, this step constituted a major obstacle in the implementation of BS tools in this species. This barrier has been partially lifted since a method of transformation of M. hominis based on polyethylene glycol (PEG) and involving the plasposon pMT85 (plasmid carrying a transposon conferring resistance to tetracycline) has been developed in the laboratory. This transformation technique, developed for the reference strain M. hominis M132 (745 kb) still remains not very efficient; it is nevertheless reproducible and allowed to obtain M. hominis mutants of interest. The Mhom132_2390 gene, encoding the precursor of the P75 protein, a putative adhesin of M. hominis, was effectively mutated in transformant No. 28-2. Complete genome sequencing of other transformants revealed the insertion of multiple copies of the transposon and the presence of duplication and inversion of large DNA fragments within at least two M. hominis genomes.In conclusion, this data has opened the way for the development and transposition of existing genetic modification approaches to M. hominis, previously considered as a genetically intractable bacterium.
Identifer | oai:union.ndltd.org:theses.fr/2018BORD0227 |
Date | 15 November 2018 |
Creators | Rideau, Fabien |
Contributors | Bordeaux, Bébéar, Cécile |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0152 seconds