Estudos em que a resposta de interesse é uma variável categorizada são bastante comuns nas mais diversas áreas da Ciência. Em muitas situações essa resposta é composta por mais de duas categorias não ordenadas, denominada então de uma variável politômica nominal, e em geral o objetivo do estudo é associar a probabilidade de ocorrência de cada categoria aos efeitos de variáveis explicativas. Ademais, existem tipos especiais de estudos em que os dados são coletados diversas vezes para uma mesma unidade amostral ao longo do tempo, os estudos longitudinais. Estudos assim requerem o uso de modelos estatísticos que considerem em sua formulação algum tipo de estrutura que suporte a dependência que tende a surgir entre observações feitas em uma mesma unidade amostral. Neste trabalho são abordadas duas extensões do modelo de logitos generalizados, usualmente empregado quando a resposta é politômica nominal com observações independentes entre si. A primeira consiste de uma modificação das equações de estimação generalizadas para dados nominais que se utiliza de razões de chances locais para descrever a dependência entre as observações da variável resposta politômica ao longo dos diversos tempos observados. Este tipo de modelo é denominado de modelo marginal. A segunda proposta abordada consiste no modelo de logitos generalizados com a inclusão de efeitos aleatórios no preditor linear, que também leva em conta uma dependência entre as observações. Esta abordagem caracteriza o modelo de logitos generalizados misto. Há diferenças importantes inerentes às interpretações dos modelos marginais e mistos, que são discutidas e que devem ser levadas em consideração na escolha da abordagem adequada. Ambas as propostas são aplicadas em um conjunto de dados proveniente de um experimento da área agronômica realizado em campo, conduzido sob um delineamento casualizado em blocos com esquema fatorial para os tratamentos. O experimento foi acompanhado ao longo de seis estações do ano, caracterizando assim uma estrutura longitudinal, sendo a variável resposta o tipo de vegetação observado no campo (touceiras, plantas invasoras ou espaços vazios). Os resultados encontrados são satisfatórios, embora a dependência presente nos dados não seja tão caracterizada; por meio de testes como da razão de verossimilhanças e de Wald diversas diferenças significativas entre os tratamentos foram encontradas. Ainda, devido às diferenças metodológicas das duas abordagens, o modelo marginal baseado nas equações de estimação generalizadas mostra-se mais adequado para esses dados. / Studies where the response is a categorical variable are quite common in many fields of Sciences. In many situations this response is composed by more than two unordered categories characterizing a nominal polytomous outcome and, in general, the aim of the study is to associate the probability of occurrence of each category to the effects of variables. Furthermore, there are special types of study where many measurements are taken over the time for the same sampling unit, called longitudinal studies. Such studies require special statistical models that consider some kind of structure that support the dependence that tends to arise from the repeated measurements for the same sampling unit. This work focuses on two extensions of the baseline-category logit model usually employed in cases when there is a nominal polytomous response with independent observations. The first one consists in a modification of the well-known generalized estimating equations for longitudinal data based on local odds ratios to describe the dependence between the levels of the response over the repeated measurements. This type of model is also known as a marginal model. The second approach adds random effects to the linear predictor of the baseline-category logit model, which also considers a dependence between the observations. This characterizes a baseline-category mixed model. There are substantial differences inherent to interpretations when marginal and mixed models are compared, what should be considered in the choice of the most appropriated approach for each situation. Both methodologies are applied to the data of an agronomic experiment installed under a complete randomized block design with a factorial arrangement for the treatments. It was carried out over six seasons, characterizing the longitudinal structure, and the response is the type of vegetation observed in field (tussocks, weeds or regions with bare ground). The results are satisfactory, even if the dependence found in data is not so strong, and likelihood-ratio and Wald tests point to several differences between treatments. Moreover, due to methodological differences between the two approaches, the marginal model based on generalized estimating equations seems to be more appropriate for this data.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19042016-091641 |
Date | 14 January 2016 |
Creators | Menarin, Vinicius |
Contributors | Lara, Idemauro Antonio Rodrigues de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds