Ca2+, both as a first and a second messenger, is closely involved in the modulation and regulation of numerous important cellular events, such as cell proliferation, differentiation and cell death. Fine-tuned Ca2+ signaling is achieved by its reversible or irreversible binding to a repertoire of Ca2+ signaling molecules. Among them, the extracellular calcium sensing receptor (CaSR) senses Ca2+ concentration ([Ca2+]o) in the milieu outside of cells where Ca2+ serves as a first messenger. An array of naturally-occurring mutations in CaSR has been found in patients with inherited disorders of Ca2+ homeostasis, leading to abnormal intracellular responses toward [Ca2+]o. In the present study, we have computationally predicted and experimentally characterized the metal-binding properties of five Ca2+-binding sites within CaSR and the accompanying metal--induced conformational changes by using two complementary methods-the grafting approach and the subdomain approach. Based on our results, a model has been proposed to explain the distinct CaSR-mediated responses toward abnormally ¡°high¡± or ¡°low¡± extracellular Ca2+ levels. In addition, we predicted and verified the interaction between CaSR with the most ubiquitously expressed four EF-hand-containing intracellular Ca2+ sensor protein, calmodulin (CaM). Our results demonstrate that the C-terminal CaM-binding domain of the CaSR is essential for proper intracellular Ca2+ response to external signals. Furthermore, we have applied the grafting approach to study the metal-binding properties and oligomeric state of the single EF-hand containing protein, STIM1. Our studies confirmed that the single EF-hand motif in STIM1, which resides in an equilibratium between its monomeric and dimeric forms, was capable of binding Ca2+ with a dissociation constant comparable to the ER Ca2+ concentration, suggesting it could function as a ER Ca2+ sensor responsible for sensing the Ca2+ filling state of ER.
Identifer | oai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:chemistry_diss-1027 |
Date | 20 November 2008 |
Creators | Huang, Yun |
Publisher | Digital Archive @ GSU |
Source Sets | Georgia State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Chemistry Dissertations |
Page generated in 0.0025 seconds