Das Hauptthema der hier vorliegenden Arbeit befaßt sich mit dem B-Zell spezifischen Oberflächenprotein CD22, einem Mitglied der Siglec (Sialinsäure bindende Igähnliche Lektine) Proteinfamilie. Dieses Transmembranprotein besitzt sieben extrazelluläre Immunoglobulin-ähnliche Domänen und kann über die äußerste V-set Domäne seine Liganden: α2,6 verknüpfte Sialinsäuren binden. CD22 hat eine Transmembrandomäne und eine cytoplasmatische Domäne mit sechs potentiellen Tyrosin Phosphorylierungsstellen, von denen drei eine ITIM-Sequenz (engl. immunoreceptor tyrosine-based inhibitory motif) aufweisen. CD22 defiziente Mäuse zeigten eindeutig, daß das Siglec CD22 ein negativer Regulator des BCR-Signals ist. Durch BCR-Kreuzvernetzung wird CD22 tyrosinphosphoryliert, die inhibitorische Tyrosinphosphatase SHP-1 gebunden, aktiviert, und ist nun in der Lage das BCR Ca2+ Signal zu inhibieren. Um die Rolle der CD22Ligandenbindungsdomäne, in vivo zu untersuchen, sollte in dieser Arbeit eine CD22 knock -in Maus erzeugt werden (CD22R130E Maus), in der die Ligandenbindungsdomäne von CD22 durch eine Punktmutation funktionell ausgeschaltet ist. In der hieraus resultierenden Mauslinie sollte dann die BZellentwicklung, Signaltransduktion und der Immunstatus analysiert werden. Der Vergleich des Phänotyps der CD22R130E Maus und der CD22 defizienten Maus sollte dann zeigen, wie die Adhäsions- und Signalleitungseigenschaften von CD22 zusammenhängen. Der „Targeting“ Vektor für die „Gene Targeting“ Experimente wurde von der Arbeitsgruppe Dr. Anton van der Merwe (von Christina Piperi) angefertigt. Ursprünglich wurde ein „Targeting“ Vektor aus genomischer C57BL/6-DNA verwendet, um den genetischen Hintergrund der CD22-defizienten Maus beizubehalten. Dieser Vektor wurde von mir für ES-Zell Transfektionen in der C57Bl/6 ES-Zellline verwendet. Aus den Gene Targeting Experimenten mit der C57Bl/6-III ES-Zelllinie konnten zwei ES-Zellklone isoliert werden, die eine korrekte homologe Integration des Targetvektors trugen. Aus einem Blastozysteninjektions- Experiment mit einem Cre-deletierten C57BL/6-III Subklon wurden sechs hochchimäre Mäuse erhalten, mit denen allerdings keine Keimbahntransmission erzielt werden konnte. Nach Problemen mit Keimbahntransmission von Klonen aus der C57BL/6-III ESZelllinie, wurden noch die BALB/c und die E14Tg2a ES-Zelllinie für neue Gene Targeting Experimente verwendet. Die Experimente mit der BALB/c ES-Zelllinie ergaben keine ES-Zellklone mit korrekter homologer Integration, dies beruhte wahrscheinlich auf dem nicht isogenen Hintergrund. Alle folgenden Experimente mit der E14Tg2a ES-Zelllinie (genetischer Hintergrund: 129/ola) wurden mit dem verlängerten R130E-Targetvektor (Targetvektor 2), der mit 129/ola DNA um 2,3 Kb in 5’-Richtung verlängert wurde, um den isogenetischen Anteil des Targetvektors zu erhöhen, durchgeführt. Aus diesen Experimenten resultierten wiederum zwei ESZellklone, deren korrekte homologen Rekombination durch Southern Blot bestätigt werden konnten. Bei den darauffolgenden Blastozysten-Injektionsexperimenten mit diesen zwei E14Tg2a Klonen konnten fünf chimäre Tiere gewonnen werden. Ein 80 %ig chimäres Männchen erzeugte eine hohe Anzahl von Nachkommen mit Keimbahntransmission. Bei der Analyse dieser Tiere trat das Resultat zutage, daß alle diese Tiere mit Keimbahntransmission einen wildtypischen Genotyp besaßen. Ein weiteres Mitglied der Siglecproteinfamilie, das murine SiglecG (ein Ortholog zu humanem Siglec10), wurde in dieser Arbeit untersucht. In Zusammenarbeit mit dem Labor von Dr. Paul Crocker sollte eine SiglecG knock out Maus hergestellt werden. Die Strategie für die Gene Targeting Experimente für einen SiglecG knock out basierten auf der Verwendung der BalbI ES-Zelllinie (aus BALB/c Mäusen), da hiermit sehr gute Erfahrungen vorlagen, was die Stabilität ihrer Pluripotenz und des Keimbahntransmissionspotenzials angeht. Daher wurde im Labor von Paul Crocker (von Sheena Kerr) ein Kontroll- und ein Targetvektor kloniert, mit dem große Teile der ersten und zweiten Ig-Domäne von SiglecG ausgeschaltet werden sollte. Mit diesem Vektor führte ich mehrere ES-Zell Transfektionsexperimente durch. Innerhalb der Zeitspanne meiner Doktorarbeit konnten keine ES-Zellklone mit einem korrekten homologen Integrationsereignis gewonnen werden. Mittels der ursprünglichen Strategie konnte die mir nachfolgende Doktorandin jedoch ES-Zell Klone isolieren, nach Blastozysteninjektion Keimbahntransmission erzielen und somit eine SiglecGdefiziente Maus generieren. Eine andere Zusammenarbeit kam mit Dr. Burkhard Kneitz (Physiologisches Chemie I, Biozentrum, Universität Würzburg) zustande. Seine Intention war es, die Rolle des TGF-β Signalmediators SMAD2 auf B-Zellebene näher zu untersuchen. Von Erwin Böttinger bekamen wir eine Mauslinie, in der das Smad2-Gen gefloxt ist, die mit der CD19-Cre Maus gekreuzt wurde. So wurde eine B-Zell spezifische SMAD2 knock out Maus (bSmad2-/-) erzeugt. Meine Aufgabe bestand darin, die B-Zellkompartmente und die Immunantworten der B-Zell spezifischen Smad2-defizienten Maus zu analysieren. Faßt man alle gewonnenen Daten aus den hier generierten B-Zell spezifischen Smad2 knock out Tieren zusammen, so kann man zu dem klaren Ergebnis kommen, daß der TGF-β Signalmediator Smad2 eine entscheidende Rolle bei der Weiterleitung von TGF-β Signalen in das Zellinnere von B-Zellen spielt. Hierbei zeigten sich klare Veränderungen, im Vergleich zu Kontrolltieren, eine Erhöhung der Zellzahl in den Peyerschen Plaques (PP), und der B1-Zellen im Peritoneum. Die IgA-Immunantwort war in bSmad-/- Tieren stark erniedrigt. Der für TGF-β beschriebene Effekt der Proliferationshemmung von aktivierten B-Zellen war bei aktivierten B-Zellen der bSmad2-/- Mäuse hingegen nicht beeinträchtigt. / The main topic of this thesis dealt with the B cell-specific transmembrane protein CD22, a member of the Siglec (Sialic-acid binding Ig-like lectin) protein family. This transmembrane protein posseses seven extracellular domains and is capable to bind α2,6 sialic acids via its most outer V-set domain. Furthermore there are one transmembrane domain and six potential tyrosine-based phosphorylation motifs, three of which match ITIM (immunoreceptor tyrosine-based inhibitory motif) consensus sequences. CD22 deficient mice clearly showed that the Siglec CD22 is a negativ modulator of BCR signalling. BCR engagement causes tyrosine phosphorylation of CD22, now the inhibitory tyrosine phosphatase SHP-1 is able to bind, is then getting activated and is thus inhibiting the BCR Ca2+ signal. To elucidate the function of the CD22 adhesion domain in vivo, especially concerning the connection with CD22 signalling, one main topic of this work was to generate a CD22 knock in mouse (CD22R130E), in order to functionally eliminate the CD22 adhesion domain through a point mutation. The resulting new mouse line should give the opportunity to investigate B-cell development, signal transduction and the immune status ot the CD22R130E mouse. The comparison between the phenotypes of the CD22R130E mouse and the CD22 deficient mouse should resolve the interplay of adhesion and signalling of CD22. The cloning of the targeting vector for the gene targeting experiments was done in the laboratory of Dr. Anton van der Merwe (by Christina Piperi). Basically, the idea was to keep the C57BL/6 genetic background, which was already used to generate the CD22 deficient mouse by Dr. Lars Nitschke (Nitschke et al. 1997). This vector was used by me for the ES cell transfection experiments with the C57Bl/6-III ES cell line. Finally, two ES-cell clones could be identified from gene targeting experiments with the C57BL/6 ES-cell line, which carried a correct homologous integrated target vector. With one Cre-deleted C57BL/6 subclone it was possible to generate six chimaeric animals from one injection experiment, although none of these animals could give rise to germline transmission. Since occurence of crucial problems with the germline transmission of C57BL/6-III ES-cell clones, the BALB/c and E14Tg2a ES-cell lines were used for new gene targeting experiments. With the following gene targeting experiments using the BALB/c ES-cell line no homologous recombinants were obtained. This was probably due to the non-isogenic background. All following experiments performed with the E14Tg2a ES-cell line (genetic background: 129/ola) were carried out with the elongated R130E-targeting vector (targeting vector 2). This vector was created by using a genomic 129/ola template, in order to gain a new isogenetic 2.3 kb 5’- fragment. These experiments gave rise to two ES-cell clones with a correct homologous recombination event confirmed by southern blot. It was now possible to generate five chimaeric animals out of three injection experiments with these two EScell clones. One male animal, with 80 % chimaerism, produced offspring with germline transmission. The analysis of these animals with germline transmission showed that all of them possessed a wildtype like genotype. This thesis dealt with a further member of the Siglec protein family, the murine SiglecG (an ortholog to human Siglec10). In collaboration with the laboratory of Dr. Paul Crocker a SiglecG knock out mouse was to be generated. The strategy to do the gene targeting experiments was based on the usage of the BalbI ES-cell line (from BALB/c mice), since it possesses well known stability concerning pluripotential and germline transmission potential. In the laboratory of Paul Crocker (by Sheena Kerr) a control and target vector was cloned, which should eliminate a large part of the first and second Ig-domain of SiglecG. I performed different ES-cell transfection experiments with this vector. Within the timecourse of my work it was not possible to gain any ES-cell clones with correct homologous integration events. Later on ES-cell clones, germline transmission and generation of the SiglecG deficient mouse was achieved with the original strategy by the following Phd student. Another collaboration was evolved by Dr. Burkhard Kneitz (Department of Physiological Chemistry I, Würzburg). His intention was to investigate the meaning of the TGF-β signalmediator SMAD2 in a B-cell specific manner. From Erwin Böttinger we received a mouse line with a floxed Smad2 gene, which was crossed with a CD19-Cre mouse line (Rickert et al. 1997). Thus a B-cell specific SMAD2 knock out mouse (bSmad2-/-) was generated. I had to analyse the B-cell compartments and the immune responses of the B-cell specific SMAD2 knock out mouse. Taking together all data gained with the newly generated B-cell specific SMAD2 knock out mouse showed that the signalmediator SMAD2 is a crucial downstream component of TGF-β signalling in B-cell biology. The crucial differences of bSmad2-/- animals in comparison to control animals were given in an increase of cells of Payers Patches (PP) and B1 cells of peritoneal lavages. The IgA immune response was strongly reduced in bSmad2-/- animals. The well known effect of TGF-β concerning inhibition of proliferation with activated B-cells (Kehrl et al. 1986; 1989; 1991) was not impaired with activated B-cells of bSmad2-/- animals.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:1157 |
Date | January 2005 |
Creators | Klein, Jörg |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds