Return to search

Using the CRISPR/Cas9 system to understand the biology of natural killer cells and unleash their function in the tumour microenvironment

NK cell based anti-tumour therapies demonstrate high efficacy in targeting hematological malignancies, however, treatments for advanced solid tumours face challenges. The immunosuppressive environment produced by tumours prevents NK cells from maintaining cytotoxic activity and reducing tumour burden. Enhancing NK cell activation is essential to improve their function against solid tumours. Genetic manipulation of primary NK cells with viral and non-viral methods has seen a drastic improvement in recent years. Lentiviral vectors are being used to generate CAR-NK cells ex vivo, while refinement of electroporation protocols has allowed for the generation of stable gene knockouts in primary NK cells. To establish and validate the generation of a stable knockout in primary human NK cells we focused on targeting the NCAM-1 (CD56) surface adhesion molecule. The high surface expression of CD56 in NK cells makes it a suitable target to establish the knockout protocol. Furthermore, despite its levels of expression being correlated to different functional phenotypes, the role of CD56 in NK cell function is not understood.
Here we have shown that current lentiviral transduction protocols are not viable methods to deliver the sgRNA/Cas9 system into primary NK cells. However, we found that nucleofection of the sgRNA/Cas9 complex into NK cells is an efficient method to generate gene knockouts. Using newly generated CD56KO NK cells we have shown that the expression of CD56 has no effect on NK cell cytotoxicity, cytokine production, proliferation, and in vivo tissue trafficking.
In parallel, we have also identified an intracellular pathway that is active in the tumour microenvironment and could inhibit NK cell function. Recent studies on the intracellular signaling of the E3 ubiquitin-protein ligase Cbl-b have highlighted its role in inhibiting NK cell tumour lytic and anti-metastatic activity. Immunosuppressive factors produced by tumours activate the Cbl-b pathway, leading to the targeted degradation of signaling proteins required for NK cell activation. We have shown that Cbl-b is upregulated in ex vivo expanded NK cells cultured with GAS6 or ovarian cancer ascites. Therefore, the generation of human primary Cbl-bKO NK cells could be a beneficial asset to enhance NK cell cancer immunotherapy. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26825
Date January 2021
CreatorsRojas, Eduardo
ContributorsAshkar, Ali, Medical Sciences (Molecular Virology and Immunology Program)
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds