The frequency spectrum allocated to cellular mobile telephone systems is very limited. Efficient channel assignment schemes can significantly increase the utilization of the available frequency channels. Virtually Fixed Channel Assignment (VFCA) is a dynamic channel assignment method. The idea behind it is simple: each cell is allocated a set of nominal channels. A call request generated in a cell is assigned a nominal channel if one is available. Otherwise, a channel from an adjacent cell is borrowed to serve this call as long as frequency interference constraints are satisfied. VFCA is a promising method because (i) it is efficient in channel assignment, and (ii) it is relatively easy to implement compared to other dynamic channel assignment methods. VFCA has been analyzed based primarily on simulation studies in the past twenty years. In this thesis, we focus our study on development of new channel borrowing strategies and analytical models for VFCA. The contribution of this work is summarized as follows. (1) Development of an queuing model for performance analysis of VFCA. This model may also be used to conduct sensitivity analysis on some system parameters when VFCA is used. (2) Proposed a new channel reservation scheme for handoffs. (In a cellular system, when a call using a channel crosses a cell boundary, it needs to be handed off to a new channel in the new cell. This is called a handoff.) An optimization model for this channel reservation scheme is developed. (3) Applied the fluid-flow approach to modeling an integrated mobile cellular system that uses VFCA to estimate the distribution of data queue length in a cell of the system. These results are useful in the design, performance analysis and optimization of VFCA schemes.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/186331 |
Date | January 1993 |
Creators | Xu, Zuoying. |
Contributors | Mirchandani, Pitu B., Sen, Suvrajeet, Goldberg, Jeffrey B. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0131 seconds