Computational investigations were carried out to evaluate the effectiveness and usability of hybrid RANS/LES techniques for predicting the unsteady separated flow over wings with ice accretion. RANS and hybrid RANS/LES computations were performed using the viscous flow solver CHEM with the SST turbulence model. Two configurations were considered during the study: an extruded wing with a glaze-ice shape and a swept wing with a simulated glaze-ice accretion. Hybrid RANS/LES results, in general, predict a less active shear layer ``roll up' than seen in the experimental data. Qualitative improvements are seen in the hybrid RANS/LES results over corresponding RANS results. The extruded wing results show that the CHEM hybrid RANS/LES results are similar to the AVUS DES results. The use of preconditioning and a different turbulent model in CHEM showed a slight improvement in results.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4715 |
Date | 09 December 2006 |
Creators | Mankada Covilakom, Mithun Varma |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.002 seconds