Modern wireless communication systems strive to enable communications at high data rates, over wide geographical areas, and to multiple users. Unfortunately, this can be a daunting task in practice, as natural laws governing the wireless medium may hinder point-to-point transmissions. Communications over large distances (path loss), and physical obstructions in line-of-sight signals (shadowing) are prime examples of such impediments. One promising solution is to deploy intermediary terminals to help reestablish such broken point-to-point communication links. Such terminals are called relay nodes, and the corresponding systems are referred to as being relay-aided.
As in the case of point-to-point communication, design of efficient transmission and reception techniques in relay-aided systems depends on the availability of propagational channel state information. In practice, such information is only accurate to a certain degree which is governed by overhead constraints, feedback delay, and channel fluctuations due to mobility. Understanding the impacts of such partial channel state information, and devising transmission and reception methods based on such understandings, is the main topic of this dissertation.
The transmission protocol classifies relays as either one-way, where the relay receives signals from one terminal, or two-way, where the relay receives signals from more than one terminal. Designs and solutions for both one- and two-way relaying systems are presented in this dissertation. Emphasis is placed on two-way relaying systems given their superior efficiency in utilizing channel resources.
For one-way relaying this dissertation presents power loading strategies for multiuser-multicast systems derived based on the availability of full or partial channel state information at the terminals.
In the case of two-way relaying, both single and multi-user systems are analyzed. For single-user two-way relaying, this dissertation presents optimal methods of acquiring partial channel state information via pilot-aided channel estimation methods. This includes an analysis of the effects of channel estimation upon the system sum-rate. Also, the design of channel equalizers exhibiting robustness to partial channel state information is proposed. For multi-user two-way relaying, this dissertation presents several precoding strategies at the relay terminal(s) to combat the effects co-channel interference in light of the existence of self-interference inherent to two-way relaying operations. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-08-4264 |
Date | 21 October 2011 |
Creators | Yazdan Panah, Ali |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0017 seconds