Return to search

Evaluation of the effect of heat on the slurry technique for inductively coupled plasma atomic emission spectrometry

A sample introduction system was developed with the goal of improving the efficiency of introduction of slurries into an inductively coupled plasma for atomic emission spectrometry. The system consisted of a Legere nebulizer with a heated spray chamber followed by a condenser. A capillary injector tube of 1.0 mm i.d. was required to minimize the signal variations caused by fluctuations of the injection gas. Comparing with a conventional slurry system, the hot system increased the transport efficiency by 2 for liquid and solid samples while it decreased the water content of the aerosol by 38%: 9.3 mg/min compared to 14.8 mg/min. The heated chamber increased the signal intensities by a factor of 11 for liquid samples and by 3 for solid samples. The use of a hot nebulization gas did not contribute further to the signal enhancement of the system. The large difference in slopes of calibration curves for liquids and solids resulted in low accuracy for the analysis of marine sediments: less than 50% in general. Poor efficiency of decomposition of the solid particles is considered the cause of low accuracy.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.59402
Date January 1989
CreatorsGervais, Lyne
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001067573, proquestno: AAIMM63572, Theses scanned by UMI/ProQuest.

Page generated in 0.0028 seconds