Return to search

Flow Field–Flow Fractionation for size analysis and characterization of nanoparticles for applications in Life Sciences

Nanotechnologies are rapidly expanding because of the opportunities that the new materials offer in many areas such as the manufacturing industry, food production, processing and preservation, and in the pharmaceutical and cosmetic industry. Size distribution of the nanoparticles determines their properties and is a fundamental parameter that needs to be monitored from the small-scale synthesis up to the bulk production and quality control of nanotech products on the market. A consequence of the increasing number of applications of nanomaterial is that the EU regulatory authorities are introducing the obligation for companies that make use of nanomaterials to acquire analytical platforms for the assessment of the size parameters of the nanomaterials.
In this work, Asymmetrical Flow Field-Flow Fractionation (AF4) and Hollow Fiber F4 (HF5), hyphenated with Multiangle Light Scattering (MALS) are presented as tools for a deep functional characterization of nanoparticles.
In particular, it is demonstrated the applicability of AF4-MALS for the characterization of liposomes in a wide series of mediums. Afterwards the technique is used to explore the functional features of a liposomal drug vector in terms of its biological and physical interaction with blood serum components: a comprehensive approach to understand the behavior of lipid vesicles in terms of drug release and fusion/interaction with other biological species is described, together with weaknesses and strength of the method.
Afterwards the size characterization, size stability, and conjugation of azidothymidine drug molecules with a new generation of metastable drug vectors, the Metal Organic Frameworks, is discussed. Lastly, it is shown the applicability of HF5-ICP-MS for the rapid screening of samples of relevant nanorisk: rather than a deep and comprehensive characterization it this time shown a quick and smart methodology that within few steps provides qualitative information on the content of metallic nanoparticles in tattoo ink samples.

Identiferoai:union.ndltd.org:unibo.it/oai:amsdottorato.cib.unibo.it:6446
Date09 April 2014
CreatorsBorghi, Francesco <1984>
ContributorsReschiglian, Pierluigi
PublisherAlma Mater Studiorum - Università di Bologna
Source SetsUniversità di Bologna
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Thesis, PeerReviewed
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds