The Generalized Parton Distributions (GPDs) provide a new description of the nucleon structure in terms of its elementary constituents, the quarks and the gluons. The GPDs give access to a unified picture of the nucleon, correlating the information obtained from the measurements of the Form Factors and the Parton Distribution Functions. They describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon.Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark of the nucleon eN -> e'N'γ, is the most straightforward exclusive process allowing access to the GPDs. A dedicated experiment to study DVCS with the CLAS detector of Jefferson Lab has been carried out using a 5.883 GeV polarized electron beam and an unpolarized hydrogen target, allowing to collect DVCS events in the widest kinematic range ever explored in the valence region : 1 < Q^2 < 4.6 〖GeV〗^2, 0.1 < x_B < 0.58, 0.09 < -t < 3 〖GeV〗^2 .In this work, we present the extraction of three different DVCS observables: the unpolarized cross section, the difference of polarized cross sections and the beam spin asymmetry. We present comparisons with GPD model. We show a preliminary extraction of the GPDs using the latest fitting code procedure on our data, and a preliminary interpretation of the results in terms of parton density.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00776869 |
Date | 27 November 2012 |
Creators | Guegan, Baptiste |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0021 seconds