Scania has identified a problem among certain costumers in very dusty environments. The air filters for their truck’s climate system need extensive maintenance, replacement or manual cleaning, because of dust frequently loading up the filters. In this thesis the problem has been analyzed in order to find a solution. The process was initiated by the usage of the black box method, where needed transformations were found, resulting in three needed technical systems. Thereafter, brainstorming was used to find concepts for each technical system. Concepts were compared and ranked against each other. For the most critical of the three systems, the cleaning action, prototypes were built of the four highest ranked concepts. These prototypes were then used to compare the performance between the concepts. The selected filter cleaning device consists of a method to analyze filter blockage, alert the driver when cleaning is needed and a system to clean the filter for the Scania climate system. The system consists of a pressure sensor used to measuring filter blockage, an air pulse system which cleans the filter and a controller unit to control the cleaning cycle and to inform the driver. The air pulse system has two main parts, a pulse valve and an air tank. The pulse valve is used for releasing the air accumulated in the air tank. The complete system is supplied with 8.5 bar from the internal air pressure system in the truck and a 24 V power supply, also located in the truck. A suggestion on how a final implementation can be done has been developed, with a minimized number of variants and modifications of parts already in production. A proof of concept was built and mounted in a truck to validate the complete system. Numbers on cleaning performance and sound levels have been produced. The proof of concept manages to remove the restriction created from dust by approximately 50 %. Aside from developing a suitable filter cleaning device, figures on when the filter needs to be cleaned have been identified. To keep a good working environment within the cab a pressure drop over the filter of 936 Pa is recommended as a point of cleaning. This is to maintain the needed airflow of at least 123 m3/h with two persons seated in the cab to not exceed regulated levels of CO2 within the truck cab.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-153638 |
Date | January 2018 |
Creators | Andersson, Filip, Martinsson, Niklas |
Publisher | Linköpings universitet, Maskinkonstruktion, Linköpings universitet, Maskinkonstruktion |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0013 seconds