This thesis focuses on the evaluation of biomarkers for radio-immunodiagnostics and radio-immunotherapy and on radiosensitization strategies after HSP90 inhibition, as a step towards more personalized cancer medicine. There is a need to develop new tracers that target cancer-specific biomarkers to improve diagnostic imaging, as well as to combine treatment strategies to potentiate synergistic effects. Special focus has been on the cell surface molecule CD44 and its oncogenic variants, which were found to exhibit unique expression patterns in head and neck squamous cell carcinoma (HNSCC). The variant CD44v6 seems to be a promising target, because it is overexpressed in this cancer type and is associated with radioresistance. Two new radioconjugates that target CD44v6, namely, the Fab fragment AbD15179 and the bivalent fragment AbD19384, were investigated with regard to specificity, biodistribution and imaging performance. Both conjugates were able to efficiently target CD44v6-positive tumors in vitro and in vivo. PET imaging of CD44v6 with 124I-AbD19384 revealed many advantages compared with the clinical standard 18F-FDG. Furthermore, the efficacy of the novel HSP90 inhibitor AT13387 and its potential use in combination with radiation treatment were evaluated. AT13387 proved to be a potent new cancer drug with favorable pharmacokinetics. Synergistic combination effects at clinically relevant drug and radiation doses are promising for both radiation dose reduction and minimization of side effects, or for an improved therapeutic response. The AT13387 investigation indicated that CD44v6 is not dependent on the molecular chaperone HSP90, and therefore, radio-immunotargeting of CD44v6 in combination with the HSP90 inhibitor AT13387 might potentiate treatment outcomes. However, EGFR expression levels did correlate with HSP90 inhibition, and therefore, molecular imaging of EGFR-positive tumors may be used to assess the treatment response to HSP90 inhibitors. In conclusion, these results demonstrate how tumor targeting with radiolabeled vectors and chemotherapeutic compounds can provide more specific and sensitive diagnostic tools and treatment options, which can lead to customized treatment decisions and a functional diagnosis that provides more precise and safer drug prescribing, as well as a more effective treatment for each patient.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-247539 |
Date | January 2015 |
Creators | Spiegelberg, Diana |
Publisher | Uppsala universitet, Medicinsk strålningsvetenskap, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1085 |
Page generated in 0.0028 seconds