Return to search

Transportadores de oxig?nio ? base de mangan?s para utiliza??o em processos de combust?o com recircula??o qu?mica

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-03-28T19:07:36Z
No. of bitstreams: 1
TiagoRobertoDaCosta_TESE.pdf: 4624767 bytes, checksum: b882489e2f56b6e0d740f5f1aaf85b08 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-03-28T23:57:17Z (GMT) No. of bitstreams: 1
TiagoRobertoDaCosta_TESE.pdf: 4624767 bytes, checksum: b882489e2f56b6e0d740f5f1aaf85b08 (MD5) / Made available in DSpace on 2017-03-28T23:57:17Z (GMT). No. of bitstreams: 1
TiagoRobertoDaCosta_TESE.pdf: 4624767 bytes, checksum: b882489e2f56b6e0d740f5f1aaf85b08 (MD5)
Previous issue date: 2016-08-05 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq) / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / A matriz energ?tica mundial ? basicamente constitu?da a base de combust?veis f?sseis, sendo que diferentes estudos indicam que nas pr?ximas d?cadas n?o haver? mudan?as significativas nesse cen?rio e isso impacta de modo significativo no meio ambiente, pois a queima desses combust?veis para gera??o de energia produz bastante CO2. Sendo o di?xido de carbono o principal g?s de origem antropog?nica, respons?vel pela intensifica??o do efeito estufa. Devido a isso, cientistas e pol?ticos de todo mundo tem sugerido diversas medidas e tecnologias que objetivam a diminui??o das emiss?es de CO2 na atmosfera para as pr?ximas d?cadas. Entre as tecnologias, a Captura e Armazenamento de CO2 (CAC) tem tido um destaque especial nos ?ltimos anos. Estudos realizados pela Ag?ncia Internacional de Energia (International Energy Agency-IEA) quanto o Painel Intergovernamental sobre Mudan?as Clim?ticas (IPCC), sugerindo diversos cen?rios de crescimento econ?micos e de demanda energ?tica, indicam que na maioria dos casos as tecnologias de captura e armazenamento do CO2 contribuem entre 10-55% do esfor?o mundial para reduzir as concentra??es de CO2 na atmosfera at? 2100. Nesse contexto, a combust?o indireta com transportadores s?lidos de oxig?nio (processo Chemical-Looping Combustion-CLC), ? considerada uma das melhores alternativas para reduzir os custos da captura do CO2, principalmente quando comparadas aos processos convencionais, pois n?o necessita da separa??o do CO2 do N2, pois o combust?vel n?o ? misturado diretamente com ar ou oxig?nio. Esta tese de doutorado est? focada no desenvolvimento de cinco transportadores de oxig?nio ? base de mangan?s, os quais foram primeiramente caracterizados com objetivo de determinar quais deles s?o mais promissores para serem avaliados em processos de CLC. As t?cnicas e metodologias de caracteriza??es utilizadas durante a primeira etapa foram: porosimetria por inje??o de merc?rio, resist?ncia ? fratura, difra??o de raios X (DRX), redu??o e oxida??o ? temperatura programada (TPR e TPO), capacidade de transporte de oxig?nio (Roc), composi??o qu?mica, reatividade por termogravimetria e ?ndice de velocidade. Conclu?da essas etapas, verificou-se que os transportadores Mn-ZrMF e Mn-ZrSG apresentaram propriedades apropriadas para serem avaliados em um reator de leito fluidizado descont?nuo, onde os experimentos se assemelham ?s condi??es de CLC. Ao fim dos testes no reator, os transportadores de oxig?nio foram submetidos a algumas t?cnicas de caracteriza??o: DRX, TPR e MEV (Microscopia Eletr?nica de Varredura). O transportador Mn-ZrMF apresentou problemas de aglomera??o durante os testes no reator, sendo considerado inapropriado para prosseguir com os experimentos. Por outro lado, o Mn-ZrSG apresentou elevada reatividade com os combust?veis utilizados (CO > H2 > CH4), n?o sendo verificado o problema da aglomera??o, tendo baixa perda por atrito, com vida m?dia superior a 11.000 horas. Esse material ? bastante promissor para seu uso em CLC de combust?veis s?lidos. / The world?s energy matrix is essentially composed of fossil fuels and different studies show indicate that in the next decades there will be no significant changes in this scenario, which impacts significantly on the environment, since the burning of fossil fuels for power generation gives there main contibution to antropogenic CO2 emissions produces greatest amount of CO2. Carbon dioxide is the main anthropogenic gas responsible for intensifying the greenhouse effect. Because of this, scientists and politicians around the world have suggested a number of strategies and technologies to reduce CO2 emissions to the atmosphere for the next decades. Among these technologies, CO2 capture and storage (CCS) has gained attention in recent years. Studies conducted by the International Energy Agency (IEA) and the Intergovernmental Panel on Climate Change (IPCC) suggest various scenarios of economic growth and energy demand, indicating that in most cases the CO2 capture and storage technologies will contribute between 10-55% of the global effort to reduce CO2 concentrations in the atmosphere by 2100. In this context, the Chemical-Looping Combustion is considered one of the better alternatives to reduce the cost of CO2 capture, especially when compared to conventional capture processes, since it does not require the separation of CO2 from N2, once fuel is not mixed directly with air or oxygen. This doctoral thesis is focused in the development of five manganese-based oxygen carriers, which were first characterized in order to determine which of them are most promising to be evaluated in CLC processes. The techniques and characterization methods used during the first stage were: mercury porosimetry, fracture resistance, X-ray diffraction (XRD), temperature programmed reduction and oxidation (TPR and TPO), oxygen transport capacity (Roc), chemical composition, redox by thermogravimetry and rate index. Completed these steps, it was found that the carriers Mn- ZrMF and ZrSG presented appropriate properties to be evaluated in a discontinuous fluidized bed reactor, where the experiment conditions are subject to the CLC conditions. After the testing reactor, the oxygen carriers were submitted to the following characterization techniques: DRX, TPR and SEM (Scanning Electron Microscopy). Mn-ZrMF carrier presented problems of agglomeration during testing in the reactor, being considered inappropriate for CLC. On the other side, the Mn-ZrSG carrier showed high reactivity with the fuels used (CO> H2> CH4). Due this Mn-ZrSG is appropriate for CO + H2 combustion, but suffer deactivation during CH4 combustion. Do not showed agglomeration problems. The attrition rate was low and the lifetime was than 11.000 hours. Thus this material can be considered suitable to be used in solid fuels CLC.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/22510
Date05 August 2016
CreatorsCosta, Tiago Roberto da
Contributors06117988320, http://lattes.cnpq.br/3318871716111536, Braga, Renata Martins, 05165674460, http://lattes.cnpq.br/4603529162393328, Alves, Jos? Antonio Barros Leal Reis, 00789376393, http://lattes.cnpq.br/0878544737281187, Adanez, Juan, 00000000000, Ruiz, Juan Alberto Chavez, 00744293456, http://lattes.cnpq.br/7463463383362150, Melo, Dulce Maria de Ara?jo
PublisherPROGRAMA DE P?S-GRADUA??O EM CI?NCIA E ENGENHARIA DE MATERIAIS, UFRN, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds