Vários problemas de interesse em Ciência e Engenharia são formulados como problemas de otimização.
A complexidade dos problemas modernos tem levado ao desenvolvimento de modelos matemáticos de complexidade crescente, resultando em modelos de simulação computacionalmente custosos.
Algoritmos Genéticos (AG), inspirados na Teoria de Evolução por seleção natural, são ferramentas versáteis em problemas difíceis de busca e otimização.
Entretanto, eles usualmente requerem um elevado número de
avaliações até a obtenção de uma solução viável ou satisfatória. Em um cenário de simulações dispendiosas, o
uso de Algoritmos Genéticos pode tornar-se proibitivo.
Uma possível solução para este problema é o uso de um
metamodelo, para ser usado no processo de otimização no lugar do modelo de simulação.
Nesta tese desenvolveu-se uma metodologia para o uso combinado de AG e metamodelos para otimização mono- e
multi-objetivo de alto custo computacional, onde
metamodelos baseados em similaridade são
incorporados nos AG com o objetivo de melhorar o
seu desempenho.
A metodologia foi aplicada em problemas de otimização
coletados da literatura, e em problemas de Otimização Estrutural, demonstrando sua aplicabilidade e estabelecendo esta como uma alternativa para o melhoramento de soluções em um contexto de orçamento
fixo de simulações.
Identifer | oai:union.ndltd.org:IBICT/oai:agregador.ibict.br.BDTD_LNCC:oai:lncc.br:83 |
Date | 24 June 2010 |
Creators | Leonardo Goliatt da Fonseca |
Contributors | Afonso Celso de Castro Lemonge, Laurent Emmanuel Dardenne, Alvaro Luiz Gayoso de Azeredo Coutinho, Nelson Francisco Favilla Ebecken, Helio José Corrêa Barbosa |
Publisher | Laboratório Nacional de Computação Científica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações do LNCC, instname:Laboratório Nacional de Computação Científica, instacron:LNCC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds