Return to search

Implementation of DRAND, the Distributed and Scalable TDMA Time Slot Scheduling Algorithm

The problem of energy savings is the most important subject currently in the research area of wireless sensor networks. So, in order to present a better scheme for energy savings and system performance, the TDMA scheme is considered as a solution. Moreover, the TDMA time slot scheduling algorithm is an important issue in running the TDMA scheme. The distributed and scalable fashion is required in wireless sensor networks because it is very difficult and inefficient to manage many sensor nodes by the centralized method with small size of memory space and battery capacity on each sensor node deployed in the broad sensing field. So, we implemented DRAND, the TDMA time slot scheduling algorithm which supports the important requirements as we listed above. Even though a scheme shows good performance by the simulation result, the implementation as a real system is another problem to solve. This is because good simulation results could not guarantee that implementation of the algorithm would work properly in the real word due to various unexpected obstacles. Therefore, by implementing the DRAND scheme as a real system, we can confirm the analysis and simulation result with various real experiments. For the experiment, we use up to 42 MICA2 motes for one-hop and multi-hop test.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-12012005-152207
Date06 December 2005
CreatorsMin, Jeong Ki
ContributorsDr. Jaewoo Kang, Dr. Rudra Dutta, Dr. Injong Rhee
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-12012005-152207/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds