The synthesis of type-enriched semiconducting or metallic single-walled carbon nanotubes (sc/m-SWCNTs) with high quality by means of catalytic chemical vapor deposition (CCVD) are essential prerequisites for implementing of SWCNTs into nanodevices. In particular, the Fe−Co bimetallic catalysts system is promising due to its ability to grow SWCNTs by CCVD. However, there is still a gap in understanding how to adjust catalyst composition aiming further improvements in SWCNTs properties with respect to the electronic type. In particular, formation of well-defined nanoalloy of bimetallic catalysts during catalyst conditioning as well as its impact on SWCNTs growth are not clearly understood. Here we present a systematic investigation on effects of catalyst composition based on different Molar ratios of Fe:Co catalysts on the properties of CCVD grown SWCNTs using Raman spectroscopy. After CVD growth of SWCNTs on different molar ratios of Fe:Co, We find that by using molar ratio of Fe:Co=1:1.5, growth of SWNTs that are strongly dominated by two types of semiconducting tubes, the (7,5) and (12,1) tubes, can be achieved.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-133186 |
Date | January 2017 |
Creators | Motaragheb Jafarpour, Saeed |
Publisher | Umeå universitet, Institutionen för fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds