Return to search

Jackknife Empirical Likelihood Inference for the Absolute Mean Deviation

In statistics it is of interest to find a better interval estimator of the absolute mean deviation. In this thesis, we focus on using the jackknife, the adjusted and the extended jackknife empirical likelihood methods to construct confidence intervals for the mean absolute deviation of a random variable. The empirical log-likelihood ratio statistics is derived whose asymptotic distribution is a standard chi-square distribution. The results of simulation study show the comparison of the average length and coverage probability by using jackknife empirical likelihood methods and normal approximation method. The proposed adjusted and extended jackknife empirical likelihood methods perform better than other methods for symmetric and skewed distributions. We use real data sets to illustrate the proposed jackknife empirical likelihood methods.

Identiferoai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:math_theses-1135
Date15 July 2013
Creatorsmeng, xueping
PublisherDigital Archive @ GSU
Source SetsGeorgia State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMathematics Theses

Page generated in 0.0019 seconds