While the traditional form of continued fractions is well-documented, a new form, designed to approximate real numbers between 1 and 2, is less well-studied. This report first describes prior research into the new form, describing the form and giving an algorithm for generating approximations for a given real number. It then describes a rational function giving the rational number represented by the continued fraction made from a given tuple of integers and shows that no real number has a unique continued fraction. Next, it describes the set of real numbers that are hardest to approximate; that is, given a positive integer $n$, it describes the real number $\alpha$ that maximizes the value $|\alpha - T_n|$, where $T_n$ is the closest continued fraction to $\alpha$ generated from a tuple of length $n$. Finally, it lays out plans for future work.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1013 |
Date | 01 May 2011 |
Creators | Wiyninger, Donald Lee, III |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | Donald Lee Wiyninger III |
Page generated in 0.0022 seconds