Chronic lung diseases including Chronic Obstructive Pulmonary Disease (COPD), Idiopathic Pulmonary Fibrosis (IPF) and lung cancer are major causes of morbidity and mortality in the United States due to high incidence and limited therapeutic options. In order to address this critical issue, I have leveraged RNA sequencing and integrative genomics to define disease-associated transcriptomic changes which could be potentially targeted to lead to new therapeutics.
We sequenced the lung transcriptome of subjects with IPF (n=19), emphysema (n=19, a subtype of COPD), or neither (n=20). The expression levels of 1770 genes differed between IPF and control lung, and 220 genes differed between emphysema and control lung (p<0.001). Upregulated genes in both emphysema and IPF were enriched for the p53/hypoxia pathway. These results were validated by immunohistochemistry of select p53/hypoxia proteins and by GSEA analysis of independent expression microarray experiments. To identify regulatory events, I constructed an integrative miRNA target prediction and anticorrelation miRNA-mRNA network, which highlighted several miRNA whose expression levels were the opposite of genes differentially expressed in both IPF and emphysema. MiR-96 was a highly connected hub in this network and was subsequently overexpressed in cell lines to validate several potential regulatory connections.
Building upon these successful experiments, I next sought to define gene expression changes and the miRNA-mRNA regulatory network in never smoker lung cancer. Large and small RNA was sequenced from matched lung adenocarcinoma tumor and adjacent normal lung tissue obtained from 22 subjects (8 never, 14 current and former smokers). I identified 120 genes whose expression was modified uniquely in never smoker lung tumors. Using a repository of gene-expression profiles associated with small bioactive molecules, several compounds which counter the never smoker tumor signature were identified in silico. Leveraging differential expression information, I again constructed an mRNA-miRNA regulatory network, and subsequently identified a potential never smoker oncomir has-mir-424 and its transcription factor target FOXP2.
In this thesis, I have identified genes, pathways and the miRNA-mRNA regulatory network that is altered in COPD, IPF, and lung adenocarcinoma among never smokers. My findings may ultimately lead to improved treatment options by identifying targetable pathways, regulators, and therapeutic drug candidates. / 2017-02-01T00:00:00Z
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/15452 |
Date | 12 March 2016 |
Creators | Kusko, Rebecca |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Rights | Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.002 seconds