Return to search

Techniques tensorielles pour le traitement du signal : algorithmes pour la décomposition polyadique canonique / Tensor techniques for signal processing : algorithms for Canonical Polyadic decomposition

L’approximation tensorielle de rang faible joue ces dernières années un rôle importantdans plusieurs applications, telles que la séparation aveugle de source, les télécommunications, letraitement d’antennes, les neurosciences, la chimiométrie, et l’exploration de données. La décompositiontensorielle Canonique Polyadique est très attractive comparativement à des outils matriciels classiques,notamment pour l’identification de systèmes. Dans cette thèse, nous proposons (i) plusieursalgorithmes pour calculer quelques approximations de rang faible spécifique: approximation de rang-1 itérative et en un nombre fini d’opérations, l’approximation par déflation itérative, et la décompositiontensorielle orthogonale; (ii) une nouvelle stratégie pour résoudre des systèmes quadratiquesmultivariés, où ce problème peut être réduit à la meilleure approximation de rang-1 d’un tenseur; (iii)des résultats théoriques pour étudier les performances ou prouver la convergence de quelques algorithmes.Toutes les performances sont illustrées par des simulations informatiques. / Low rank tensor decomposition has been playing for the last years an important rolein many applications such as blind source separation, telecommunications, sensor array processing,neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is veryattractive when compared to standard matrix-based tools, manly on system identification. In this thesis,we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterativerank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii)A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or theconvergence of some algorithms. All performances are supported by numerical experiments. / A aproximação tensorial de baixo posto desempenha nestes últimos anos um papel importanteem várias aplicações, tais como separação cega de fontes, telecomunicações, processamentode antenas, neurociênca, quimiometria e exploração de dados. A decomposição tensorial canônicaé bastante atrativa se comparada às técnicas matriciais clássicas, principalmente na identificação desistemas. Nesta tese, propõe-se (i) vários algoritmos para calcular alguns tipos de aproximação deposto: aproximação de posto-1 iterativa e em um número finito de operações, a aproximação pordeflação iterativa, e a decomposição tensorial ortogonal; (ii) uma nova estratégia para resolver sistemasquadráticos em várias variáveis, em que tal problema pode ser reduzido à melhor aproximaçãode posto-1 de um tensor; (iii) resultados teóricos visando estudar o desempenho ou demonstrar aconvergência de alguns algoritmos. Todas os desempenhos são ilustrados através de simulações computacionais.

Identiferoai:union.ndltd.org:theses.fr/2016GREAT042
Date29 June 2016
CreatorsSilva, Alex Pereira da
ContributorsGrenoble Alpes, Université Fédéral du Ceará, Comon, Pierre, Almeida, André Lima Ferrer de
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds