Foram estudadas as propriedades de fadiga em dois grupos de soldas de alta resistência e baixa liga com diferentes composições microestruturais. As soldas do grupo A apresentaram microestruturas compostas de ferrita acicular, ferrita alotriomórfica e ferrita de Widmanstätten, com limite de escoamento de aproximadamente 460 MPa, enquanto que as soldas do grupo B apresentaram microestruturas compostas de martensita de baixo carbono, bainita e ferrita acicular, com limite de escoamento de aproximadamente 850 MPa. A partir do ensaio de trincas longas, foi obtida a taxa de crescimento por ciclos de carregamento, da/dN, de da/dN=1,18·10-12·DeltaK2,91 e da/dN=1,34·10-11·DeltaK2,64, respectivamente para as soldas dos grupos A e B. Como pode ser observado a partir destas equações, a taxa de crescimento foi mais alta para o grupo B. Da análise do fechamento da trinca pode ser concluído que o principal fator determinante de uma menor taxa de propagação para as soldas do grupo A foi a plasticidade desenvolvida pela estrutura. Dos ensaios de trincas curtas foi observado que no caso das soldas do grupo A, uma vez nucleada a trinca, esta se propagava até o colapso do corpo de prova. Para as soldas do grupo B foi observado que não bastava a existência de uma trinca para que esta se propagasse até a fratura total do corpo de prova e que o fator controlador foi a granulomentria associada a uma determinada composição microestrutural. / The fatigue properties of two groups of high strength low alloy steel weld metals with different microstructural composition were studied. Weld metals from group A presented microstructures composed of acicular ferrite, Widmanstätten ferrite and allotriomorphic ferrite, with yield strength of 460 MPa. Weld metals from group B exhibited a microstructural composition of low carbon martensite, bainite and acicular ferrite, with a yield strength of 850 MPa. The fatigue crack growth per cycle of loading, da/dN, for weld metals from groups A and B is obtained from the relationships, da/dN=1,18·10-12·DeltaK2,91 and da/dN=1,34·10-11·DeltaK2,64, respectively. As can be seen from these equations, the crack growth rate was higher for group B. From the crack growth closure analysis, it may be concluded that the lower crack growth rate obtained for weld metals from group A was mainly due to the higher crack tip plasticity developed in this type of microstructure. From the short crack fatigue tests, it was observed for weld metals from group A, that once a crack was nucleated, it propagated until the testpiece plastic collapsed. For weld metals from group B, it was observed that the existence of a crack was not sufficient to cause the complete testpiece failure, and the association of the grain size with the local microstructure was the main factor controlling the failure process.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17102001-111717 |
Date | 17 March 1999 |
Creators | Braz, Maria Heloisa Pereira |
Contributors | Bose Filho, Waldek Wladimir |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds