This thesis investigates a novel way to simulate cracks as an extension of the Mate- rial Point Method (MPM). Previous methods, like CRAMP (CRAcks with Material Points), often use an explicit crack representation to define the material crack. We use an implicit crack representation defined as the intersection between pieces of the original specimen created by a pre-fracture process. Material chunks are there- after forced together using massless particle constraints. The method has proven successful in tearing scenarios, and the main benefits are: (1) minor computational overhead compared to the initial MPM algorithm; (2) simple to implement and scales well in 3 dimensions; (3) gives easy and controllable setup phase for desired material failure mode. The development of the crack extension has required a fully general MPM solver that can handle arbitrarily many distinct bodies connected in the same simulation. Current collision schemes for MPM exists, however these are often focused on two-body collisions and does not scale well for additional objects due to inaccuracies in contact normal calculations. We present a method that uses an iterative pair-wise comparison scheme to resolve grid collisions that extends to any number of collision objects.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-136797 |
Date | January 2016 |
Creators | Wretborn, Joel |
Publisher | Linköpings universitet, Institutionen för fysik, kemi och biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds