Return to search

Genome editing as a tool to explore transcriptional and epigenetic regulation in neural stem cells and brain cancer

Mammalian neural stem cell (NSC) lines provide a useful experimental model for basic and applied research across stem cell and developmental biology, regenerative medicine and neuroscience. NSCs are clonally expandable, genetically stable, and easily transfectable - experimental attributes compatible with functional genetic analyses. However, targeted genetic manipulations have not been reported for mammalian NSC lines. Here, we deploy the CRISPR/Cas9 technology and demonstrate a variety of diverse targeted genetic modifications in both mouse and human NSC lines such as: targeted transgene insertion at safe harbour loci; biallelic knockout of neurodevelopmental genes; knock-in of epitope tags and fluorescent reporters; and engineering of glioma driver mutations at endogenous proto-oncogenes. Leveraging these new optimised methods, we explored gene editing to model the earliest stages of paediatric gliomagenesis in primary human NSCs. Our data indicate that oncogenic mutations in histone H3.3 play a role in NSC transformation and may operate through suppression of replication induced senescence. By comparing cellular responses of NSC cultures from different compartments of the developing brain, we also identify differences in susceptibility to distinct H3.3 mutations that mirror the disease etiology. Altogether, our findings indicate that CRISPR/Cas9-assisted genome editing in NSC lines is a versatile tool to explore gene function in CNS development and cancer biology. Our project resulted in the creation of valuable human cellular models of paediatric gliomagenesis, which will allow us to further our understanding of the disease and carry out cell based drug discovery projects.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:743797
Date January 2018
CreatorsBressan, Raul Bardini
ContributorsSmith, Andrew ; Pollard, Steven
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/31095

Page generated in 0.0023 seconds