Return to search

Exploration du rôle des différents domaines C2 de l'otoferline et des isoformes des canaux calciques CaV1.3 dans la transmission synaptique des cellules ciliées auditives / Exploring the role of the various C2 domains of otoferlin and isoforms of calcium channels CaV1.3 in synaptic transmission of auditory hair cells

L'encodage du signal acoustique en impulsions nerveuses se réalise au niveau des synapses à ruban des cellules ciliées internes (CCI) de la cochlée. Une dépolarisation déclenche l'exocytose des vésicules synaptiques suite à l'activation des canaux calciques CaV1.3 et à l'action d'un senseur calcique particulier, l'otoferline, une grande protéine se composant d'un domaine transmembranaire en C-terminal et de six domaines C2 (A-F) pouvant lier le Ca2+ et les phospholipides. Afin de caractériser le rôle de ces différents domaines C2, nous avons utilisé des vecteurs viraux (AAV) permettant l'expression de formes raccourcies de l'otoferline (mini-Otof) in vivo dans les CCI de souris dépourvues d'otoferline (Otof -/-). Nous montrons que les mini-Otof contenant les domaines C2-EF, C2-DEF ou C2-ACEF sont suffisantes pour restaurer l'exocytose rapide des CCI Otof -/-, sans toutefois restaurer l'audition car le recrutement des vésicules synaptiques reste altéré. Nous révélons pour la première fois la présence d'une endocytose ultra-rapide (t < 20 ms) dynamine- et otoferline-dépendante, une fonction certainement essentielle à l'homéostasie membranaire des CCI. L'expression des mini-Otof C2-EF et C2-DEF a également permis de restaurer partiellement la composante rapide de l'inactivation du courant calcique des CCI, celle-ci étant absente chez les souris Otof -/-. Cette inactivation rapide est réalisée par les isoformes courtes Cav1.3S qui ont leur partie C-terminale régulatrice tronquée, contrairement aux isoformes longues Cav1.3L dépourvues d'inactivation. Afin de différencier les rôles spécifiques de ces isoformes dans le cycle des vésicules synaptiques, nous avons utilisé la technologie CRISPR-Cas9, nous permettant d'éditer spécifiquement la partie C-terminale régulatrice des canaux Cav1.3L. Nos résultats montrent que les souris CRISPR-Cav1.3L présentent une surdité sévère expliquée au niveau des CCI par un défaut de recrutement vésiculaire aux zones actives, alors que les Cav1.3S inaltérés contrôlent la fusion rapide des vésicules synaptiques. / The precise encoding of acoustic signals into nerve impulses is achieved at the ribbon synapses of inner hair cells (IHC) of the cochlea. Exocytosis of synaptic vesicles by IHC is triggered by voltage-activation of Cav1.3 calcium channels and the action of a specific calcium sensor, otoferlin, a large protein with a single C-terminal transmembrane domain and six C2 (A-F) domains which binds Ca2+ and interacts with phospholipids. In order to characterize the function of the various otoferlin C2 domains, we used viral vectors (AAV) allowing the expression of shortened forms of otoferlin (mini-Otof), in vivo, in IHC from mice lacking otoferlin (Otof -/-). We show that mini-Otof containing C2-EF, C2-DEF or C2-ACEF domains are sufficient to restore fast synaptic vesicle exocytosis in Otof -/- IHC, but without restoring hearing because vesicular replenishment remains impaired. For the first time, we also uncover an ultra-fast endocytosis (t < 20 ms) dynamin- and otoferlin-dependant, a function that is certainly essential for a fast regulation of IHC membrane homeostasis. Furthermore, the expression of the mini-Otof C2-EF and C2-DEF also partially restored the fast component of the Ca2+ current inactivation in Otof -/- IHC. This rapid inactivation is carried out by Cav1.3S short isoforms which have a truncated C-terminal regulatory domain, unlike Cav1.3L long isoforms which display no inactivation. To characterize the specific role of these Cav1.3 isoforms, we used CRISPR-Cas9 technology, allowing a specific removal of the C-terminal regulatory part of the Cav1.3L channels in IHC. Our results show that CRSIPR- Cav1.3L mice display severe deafness explained at the IHC level by a defect in vesicular replenishment of the active zones, while Cav1.3S are sufficient to ensure fast and transient exocytosis of docked synaptic vesicles.

Identiferoai:union.ndltd.org:theses.fr/2018BORD0435
Date19 December 2018
CreatorsTertrais, Margot
ContributorsBordeaux, Dulon, Didier
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds