Titre de l'écran-titre (visionné le 15 mai 2023) / La métagénomique virale a permis l'identification de milliers de nouvelles séquences de phages dans une variété d'écosystèmes. Leur caractérisation est limitée par leur grande diversité, puisque la majorité des nouvelles séquences virales ne ressemble à aucun phage connu et répertorié. Pour faire face à ce défi, de nouveaux outils de la bio-informatique doivent être développés permettant de mieux comprendre les interactions phages-bactéries et ainsi élucider le rôle des phages dans leur écosystème. Une approche pour étudier les interactions phages-bactéries repose sur l'exploitation des systèmes CRISPR-Cas. Chez les bactéries et les archées, ces systèmes servent de mécanismes de défense contre le matériel génétique envahisseur comme le génome des phages. Grâce à de courtes séquences appelées espaceurs, incorporées dans leur locus CRISPR, les bactéries qui portent ce système peuvent reconnaître rapidement un génome de phage, le couper et ainsi bloquer l'infection. Les espaceurs sont archivés et continuent d'être ajoutés au fil des infections, rendant le locus CRISPR très dynamique. Pour les analyses bio-informatiques, les espaceurs ont plusieurs utilités, notamment pour le typage de souches bactériennes et pour la prédiction des hôtes bactériens de séquences virales. Cependant, les quelques outils existants ont été développés avant l'accélération massive dans la découverte de nouvelles séquences de phages offerte par la métagénomique virale. Ainsi, beaucoup de travail répétitif, manuel et non standardisé était requis pour utiliser les espaceurs CRISPR dans le contexte d'études de métagénomique. Les deux premiers chapitres de cette thèse sont dédiés au développement d'outils bio-informatiques exploitant les loci CRISPR. Dans un premier temps, le logiciel CRISPRStudio a été développé pour automatiser la création de figures représentant les loci CRISPR. Ce logiciel offre une grande polyvalence, tout en accélérant la production de figures. Dans un deuxième temps, un second logiciel a été créé pour prédire les hôtes bactériens des phages. Celui-ci s'appuie sur une base de données d'espaceurs de plus de 11 millions de séquences et d'une série de critères fondés sur la biologie des systèmes CRISPR-Cas pour sélectionner l'hôte bactérien le plus probable d'un phage. Cet outil a permis d'améliorer les performances, la standardisation et la facilité d'utilisation des approches de prédiction de l'hôte utilisant les espaceurs CRISPR. Puis, les deux outils ont été mis à profit dans le troisième chapitre pour l'étude spécifique des interactions phages-bactéries entre Escherichia coli et ses phages, dans le contexte du microbiote intestinal. La caractérisation des loci CRISPR a permis d'élucider le rôle probable du système CRISPR-Cas chez cette espèce, soit un mécanisme anti-prophages. À ma connaissance, il s'agit également de la première étude identifiant une aussi grande proportion des cibles des espaceurs, en trouvant l'origine de 60 % des proto-espaceurs. / Viral metagenomics has allowed the identification of thousands of new phage sequences in various ecosystems. Yet, their characterization is still limited by their great diversity, as the majority of new viral sequences resembles no known phages in reference databases. To tackle this challenge, new bioinformatic tools are needed to better understand phage-bacteria interactions and to elucidate the role of phages in their ecosystem. One approach to study phage-bacteria interactions consists in taking advantage of CRISPR-Cas systems. In bacteria and archaea, these systems act as defense mechanisms against invading genetic material, such as phage genomes. Thanks to short sequences called spacers incorporated in their CRISPR locus, bacteria that carry this system can rapidly recognize a phage genome and block its infection, analogous to an adaptive immune system. Spacers are archived and continue to be added upon phage infection, which makes the CRISPR locus highly dynamic. In bioinformatics analyses, spacers can be utilized to perform strain typing and to predict the bacterial hosts of phages. However, the few existing tools were developed before the metagenomics era and the massive discovery of new phage sequences. Thus, exploiting CRISPR loci for viral metagenomics projects requires repetitive, manual, and non-standardized work. The first two chapters of this thesis are dedicated to developing bioinformatics tools exploiting CRISPR loci. First, a software was developed to automatize the creation of figures representing CRISPR loci. CRISPRStudio offers versatility, is user-friendly and accelerates the figure production. Second, another software was created to predict the bacterial hosts of phages. It relies on a spacer database containing more than 11 million sequences and on a set of criteria inspired by CRISPR-Cas biology to select the most likely bacterial host for a phage genome. This tool improved the performances, the standardization, and the ease of use of host prediction approaches using CRISPR spacers. In the third chapter, the two tools were used to specifically study phage-bacteria interactions between Escherichia coli and its phages, present in the gut microbiota. CRISPR characterization allowed us to uncover the probable role of the CRISPR-Cas system in this species, being an anti-prophage mechanism. To my knowledge, this is the first study that identified a large proportion of spacer targets, by finding the origin of 60% of the protospacers.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/117843 |
Date | 13 December 2023 |
Creators | Dion, Moïra |
Contributors | Moineau, Sylvain, De Koninck, Paul |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xx, 128 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.003 seconds