Le développement de nanomatériaux à propriétés optiques et fonctionnalisés pour un marquage spécifique est en plein essor dans le domaine de l'imagerie biologique. Parmi les agents de contraste exogènes déjà utilisés, les marqueurs fluorescents tels que les nanocristaux semi-conducteurs (CdSe/ZnS,...) et les molécules organiques naturelles (GFP,...) ou synthétiques (fluorescéine,...) souffrent respectivement de clignotements (blinking) et de photo-blanchiment (bleaching) c'est-à-dire d'une faible tenue au rayonnement lumineux incident. Récemment, la microscopie de Génération de Second Harmonique (GSH) à partir de structures non-centrosymétriques de certains matériaux ou molécules optiquement non linéaires (ONL), s'est révélée un outil particulièrement prometteur. Les inconvénients du clignotement et du photo-blanchiment sont en effet absents pour le processus non linéaire de GSH. De plus, le principe de fonctionnement des marqueurs ONL repose sur un processus non résonant, contrairement aux marqueurs fluorescents, ce qui est un avantage décisif pour le choix de la longueur d'onde d'excitation des nanosondes. Pour des illuminations dans le proche infrarouge, cela permet de limiter l'énergie déposée dans le milieu biologique, d'augmenter la profondeur d'imagerie et enfin de bien séparer spectralement les signaux des marqueurs ONL de l'auto-fluorescence naturelle de certains échantillons. Notre objectif, dans ce contexte, était la synthèse et la caractérisation de nouvelles nanosondes ONL de forme sphérique et de taille inférieure à 100nm. Le matériau de structure cristalline non centrosymétrique retenu est l'iodate de fer (Fe(IO3)3) car ses éléments chimiques sont peu toxiques et que ses propriétés paramagnétiques peuvent également donner un contraste en imagerie par résonance magnétique (IRM) ce qui est potentiellement intéressant par rapport à d'autres cristaux ONL tels que ZnO, KNbO3, BaTiO3 et KTP. D'un point de vue synthèse, les microémulsions inverses sont bien référencées dans la littérature pour leur rôle de gabarit permettant un bon contrôle de la taille et de la morphologie des nanomatériaux obtenus par co-précipitation. Dans ce travail, les nano-réacteurs ont été préparés à partir des systèmes AOT/alcane/eau et Triton/1-hexanol/cyclohexane/eau. De manière très originale et pratique, le développement d'un banc optique de diffusion Hyper-Rayleigh (HRS) a permis de suivre in-situ et en temps réel les cinétiques de cristallisation des nanoparticules de Fe(IO3)3 en fonction de conditions expérimentales variables. Les mécanismes de croissance et de cristallisation des nano-bâtonnets de Fe(IO3)3 ont été élucidés en combinant d'autres techniques physico-chimiques usuelles comme la diffraction des rayons X, la diffusion dynamique de la lumière et la microscopie électronique en transmission. Nous avons démontré que la température et la nature du tensioactif influencent les forces d'interaction à l'interface organique-inorganique ce qui permet, pour certaines conditions expérimentales, de réduire la taille et la polydispersité des nanocristaux en fin de processus. Toutefois, avant d'envisager l'utilisation de ces derniers en tant que marqueurs optiques spécifiques, il est nécessaire d'encapsuler ces nanocristaux en raison de la faible stabilité du composé aux pH physiologiques. Les premiers essais de stabilisation en microémulsions par une couche de silice ont permis d'obtenir des nanoparticules de taille ~ 10 nm avec une forte réponse ONL. La caractérisation complète et la fonctionnalisation de ces nanostructures ainsi qu'une optimisation des interactions à l'interface particules - films de tensioactifs constituent les perspectives de ce travail.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00678462 |
Date | 07 December 2011 |
Creators | El Kass, Moustafa |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds