TOPICAL ANALYSIS OF FAKE NEWS 4 Abstract Since the 2016 US presidential campaign of Donald Trump, the term "fake news" has permeated mainstream discourse. The proliferation of disinformation and false narratives on social media platforms has caused concern in security circles in both the United States and European Union. Combining latent Dirichlet allocation, a machine learning method for text mining, with themes on topical analysis, ideology and social identity drawn from Critical Discourse theory, this thesis examines the elaborate fake news environments of two well-known English language websites: InfoWars and Sputnik News. Through the exploration of the ideologies and social representations at play in the larger thematic structure of these websites, a picture of two very different platforms emerges. One, a white dominant, somewhat isolationist counterculture mindset that promotes a racist and bigoted view of the world. Another, a more subtle world order-making perspective intent on reaching people in the realm of the mundane. Keywords: fake news, Sputnik, InfoWars, topical analysis, latent Dirichlet allocation Od americké prezidentské kampaně Donalda Trumpa z roku 2016, termín "fake news" (doslovně falešné zprávy) pronikl do mainstreamového diskurzu. Šíření dezinformací a falešných zpráv na platformách...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:415291 |
Date | January 2020 |
Creators | Ely, Nicole |
Contributors | Střítecký, Vít, Špelda, Petr |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds