Return to search

Rekonstrukce identit ve fake news: Srovnání dvou webových stránek s obsahem fake news / Reconstructing Identities in Fake News: Comparing two Fake News Websites

TOPICAL ANALYSIS OF FAKE NEWS 4 Abstract Since the 2016 US presidential campaign of Donald Trump, the term "fake news" has permeated mainstream discourse. The proliferation of disinformation and false narratives on social media platforms has caused concern in security circles in both the United States and European Union. Combining latent Dirichlet allocation, a machine learning method for text mining, with themes on topical analysis, ideology and social identity drawn from Critical Discourse theory, this thesis examines the elaborate fake news environments of two well-known English language websites: InfoWars and Sputnik News. Through the exploration of the ideologies and social representations at play in the larger thematic structure of these websites, a picture of two very different platforms emerges. One, a white dominant, somewhat isolationist counterculture mindset that promotes a racist and bigoted view of the world. Another, a more subtle world order-making perspective intent on reaching people in the realm of the mundane. Keywords: fake news, Sputnik, InfoWars, topical analysis, latent Dirichlet allocation Od americké prezidentské kampaně Donalda Trumpa z roku 2016, termín "fake news" (doslovně falešné zprávy) pronikl do mainstreamového diskurzu. Šíření dezinformací a falešných zpráv na platformách...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:415291
Date January 2020
CreatorsEly, Nicole
ContributorsStřítecký, Vít, Špelda, Petr
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds