O emprego de veículos terrestres autônomos tem se tornado cada vez mais comum nos últimos anos em aplicações civis e militares. Eles podem ser úteis para as pessoas com necessidades especiais e para reduzir os acidentes de trânsito e o número de baixas em combate. Esta tese aborda o problema da classificação de obstáculos e da localização do veículo em relação a um mapa topológico, sem fazer uso de GPS e de mapas digitais detalhados. Um sensor laser 3D é usado para coletar dados do ambiente. O sistema de classificação de obstáculos extrai as features da nuvem de pontos e usam-nas para alimentar um classificador que separa os dados em quatro classes: veículos, pessoas, construções, troncos de árvores e postes. Durante a extração de features, um método original para transformar uma nuvem 3D em um grid 2D é proposto, o que ajuda a reduzir o tempo de processamento. As interseções de vias de áreas urbanas são detectadas e usadas como landmarks em um mapa topológico. O sistema consegue obter a localização do veículo, utilizando os pontos de referência, e identifica as mudanças de direção do veículo quando este passa pelos cruzamentos. Os experimentos demonstraram que o sistema foi capaz de classificar corretamente os obstáculos e localizar-se sem o uso de sinais de GPS. / The employment of autonomous ground vehicles, both in civilian and military applications, has become increasingly common over the past few years. Those vehicles can be helpful for disabled people and also to reduce traffic accidents. In this thesis, approaches to the problem of obstacles classification and the localization of the vehicle in relation to a topologic map are presented. GPS devices and previous digital maps are not employed. A 3D laser sensor is used to collect data from the environment. The obstacle classification system extracts features from point clouds and uses them to feed a classifier which separates data into four classes: vehicle, people, building and light poles/ trees. During the feature extraction, an original method to transform 3D to 2D data is proposed, which helps to reduce the processing time. Crossing roads are detected and used as landmarks in a topological map. The vehicle performs self-localization using the landmarks and identifying direction changes through the crossing roads. Experiments demonstrated that system was able to correctly classify obstacles and to localize itself without using GPS signals.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-05012017-144708 |
Date | 24 August 2016 |
Creators | Danilo Habermann |
Contributors | Fernando Santos Osório, Kalinka Regina Lucas Jaquie Castelo Branco, Janito Vaqueiro Ferreira, Valdir Grassi Junior, Ivan Nunes da Silva |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0013 seconds