A study of how the matrix environment impacts the structure and IR spectra of N-acetylglycine conformers. The conformational composition of this compound is determined according to an analysis of the FTIR spectra of N-acetylglycine isolated in low temperature argon matrices. Bands of three N-acetylglycine conformers are identified based on the spectra: one major and two minor. The structure of all observed conformers is stabilized by different intramolecular hydrogen bonds. The Gibbs free energies of the conformers were calculated (CCSD(T)/CBS method), and these energy values were used to calculate conformer population at a temperature of 360 K, of which 85.3% belonged to the main conformer, and 9.6% and 5.1% to the minor conformers. We also determined the size and shape of the cavities that form when the N-acetylglycine conformers are embedded in the argon crystal during matrix deposition. It is established that the most energetically favorable cavity for the planar main conformer is the cavity that forms when 7 argon atoms are replaced. At the same time, bulky minor conformers were embedded into cavities that correspond to 8 removed argon atoms. We calculated the complexation energy between argon clusters and conformers, and the deformation energy of the argon crystal and the N-acetylglycine conformers. The matrix-induced shifts to the conformer oscillation frequency are calculated. Published by AIP Publishing.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622884 |
Date | 12 1900 |
Creators | Stepanian, S. G., Ivanov, A. Yu., Adamowicz, L. |
Contributors | Univ Arizona, Dept Chem & Biochem |
Publisher | AMER INST PHYSICS |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | Published by AIP Publishing. |
Relation | http://aip.scitation.org/doi/10.1063/1.4973702 |
Page generated in 0.002 seconds