Return to search

Vícestupňové stochastické programování s CVaR: modely, algoritmy a robustnost / Multi-Stage Stochastic Programming with CVaR: Modeling, Algorithms and Robustness

Multi-Stage Stochastic Programming with CVaR: Modeling, Algorithms and Robustness RNDr. Václav Kozmík Abstract: We formulate a multi-stage stochastic linear program with three different risk measures based on CVaR and discuss their properties, such as time consistency. The stochastic dual dynamic programming algorithm is described and its draw- backs in the risk-averse setting are demonstrated. We present a new approach to evaluating policies in multi-stage risk-averse programs, which aims to elimi- nate the biggest drawback - lack of a reasonable upper bound estimator. Our approach is based on an importance sampling scheme, which is thoroughly ana- lyzed. A general variance reduction scheme for mean-risk sampling with CVaR is provided. In order to evaluate robustness of the presented models we extend con- tamination technique to the case of large-scale programs, where a precise solution cannot be obtained. Our computational results are based on a simple multi-stage asset allocation model and confirm usefulness of the presented procedures, as well as give additional insights into the behavior of more complex models. Keywords: Multi-stage stochastic programming, stochastic dual dynamic programming, im- portance sampling, contamination, CVaR

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:336153
Date January 2015
CreatorsKozmík, Václav
ContributorsDupačová, Jitka, Morton, David, Kaňková, Vlasta
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0014 seconds